线程的共享和协作

目录

  1. 并发编程的一些定义和概念
    1.1、并行和并发的区别
    1.2、多线程的安全注意事项
  2. 线程的使用
    2.1、线程的启动和中止
    2.2、run()和start()的区别
    2.3、其他线程方法
    2.4、synchronized内置锁和volatile关键字
  3. ThreadLocal
    3.1、ThreadLocal的使用
    3.2、ThreadLocal的与synchronized的比较
    3.3、ThreadLocal的实现解析
    3.4、ThreadLocal不规范使用导致的内存泄漏分析
    3.5、ThreadLocal错误使用导致的线程不安全问题
  4. 线程的等待和通知机制
  5. 末尾

一些基础知识我会略过,不了解的可以看我这篇文章javaSE—多线程基础


一、并发编程的一些定义和概念

1.1、并行和并发的区别

并行:指同时运行的多个线程,宏观和微观都是同时运行
并发: 指单个CPU核心下单位时间内运行了多少个线程,宏观并行,微观串行

并行纯靠硬件技术,并发软件技术也可以出力

并发概念核心词: 单位时间内、单核
并发跟速度一样,脱离了时间限定,也就无所谓并发这概念。
核也可以并发,上面只是为了强调并发是为了将每个CPU的运行效率最大化

1.2、多线程的安全注意事项

  1. 多线程的安全性:共享资源的数据一致性
  2. 线程死锁
  3. 线程太多了会将服务器资源耗尽形成死机当机。
    每启动一个线程,OS将会分配 1M左右 的 栈空间 给它(还不包括代码里其他变量对象的空间)

二、线程的使用

2.1、线程的启动和中止

2.1.1 新线程的创建方式只有两种:

  1. Thread方式
  2. Runnable方式(包括了Callable)
    //重看callable 和 源码

JDK英文文档——Thread类
线程的共享和协作_第1张图片

2.1.2 线程的启动:start()

2.1.3 (重点)线程的中止:interrupt()、stop()
推荐使用interrupt()

线程.stop():将线程强制打断,不管该线程是否执行完或者释放了资源没。(不推荐使用)

线程.interrupt(): 将线程的中断标志位设为true,而不是强制打断(是线程协作式的典型)
interrupt()的步骤:

  1. 在B线程中执行A.interrupt();
  2. A线程中获取中断位变化:isInterrupted() 或者 Thread.interrupted();

B线程执行A线程.interrupt(),仅仅是通知A线程请它中断,A线程是否要中断,完全由A线程自己决定

isInterrupted() 与 Thread.interrupted()的区别:

  • isInterrupted()是Thread类的普通方法,仅仅返回当前线程的中断标志位的值
  • Thread.interrupted()是Thread类的 静态 方法,在返回当前线程的中断标志位的值后,还会将中断位设为false
  • 在源码中isInterrupted() 和 Thread.interrupted() 的区别只有调用isInterrupted(boolean)的参数不同而已,isInterrupted()是传进去false,Thread.interrupted()是传进去true

isInterrupted()源码:
线程的共享和协作_第2张图片
Thread.interrupted()源码:
线程的共享和协作_第3张图片
线程的共享和协作_第4张图片

public class EndThread {
	public static void main(String[] args) throws InterruptedException {
		InterruptThread t1 = new InterruptThread("中断一号");
		t1.start();
		t1.sleep(50);
		t1.interrupt();
//		t1.stop();
	}
}

class InterruptThread extends Thread{
	public InterruptThread(String name) {
		super(name);
	}
	public void run() {
//		//完全不理会interrupt标志位的变化
//		while(true) {
//			System.out.println("我完全不理会中断位变化,不中断");
//			try { sleep(1000); } catch (InterruptedException e) { }
//		}
		
		//理会interrupt标志位的变化
		while(!isInterrupted()) {//返回当前线程的中断标志位的值,true中断,false不中断
//		while(!Thread.interrupted()) {//返回线程的中断标志位的值,而且会修改中断位为false
			System.out.println(Thread.currentThread().getName()
					+"还没被中断,中断标志位:"+isInterrupted());
		}
		//如果使用stop(),while循环后的代码都不会执行
		System.out.println("执行中断后的标志位:"+isInterrupted());
	}
}

线程可以完全不理会interrupt标志位的变化:
线程的共享和协作_第5张图片
isInterrupted():
线程的共享和协作_第6张图片
Thread.interrupted():
线程的共享和协作_第7张图片
总结:

  • A线程.interrupt():将A线程中断标志位设为true
  • isInterrupted():返回当前线程的中断标志位的值
  • Thread.interrupted():返回当前线程的中断标志位的值,并将当前线程的中断位设为false
  • A线程.interrupted():返回当前线程的中断标志位的值,并将A线程的中断位设为false( interrupted()是静态方法,其实三、四是一样的)

2.2、run()和start()的区别

start():启动新线程
run():不启动新线程,仅仅调用该线程的Runnable成员对象的run方法

Thread.start()源码:start0()——>这里启动新线程

    public synchronized void start() {
        /**
         * This method is not invoked for the main method thread or "system"
         * group threads created/set up by the VM. Any new functionality added
         * to this method in the future may have to also be added to the VM.
         *
         * A zero status value corresponds to state "NEW".
         */
        if (threadStatus != 0)
            throw new IllegalThreadStateException();

        /* Notify the group that this thread is about to be started
         * so that it can be added to the group's list of threads
         * and the group's unstarted count can be decremented. */
        group.add(this);

        boolean started = false;
        try {
            start0();//这里启动新线程
            started = true;
        } finally {
            try {
                if (!started) {
                    group.threadStartFailed(this);
                }
            } catch (Throwable ignore) {
                /* do nothing. If start0 threw a Throwable then
                  it will be passed up the call stack */
            }
        }
    }

    private native void start0();

Thread.run()源码:
线程的共享和协作_第8张图片
在这里插入图片描述
线程的共享和协作_第9张图片

2.3、其他线程方法

JDK中文文档——Thread类

1. currentThread()
2. sleep():释放CPU资源,不释放锁
3. yield():释放CPU资源,不释放锁
4. wait():释放CPU资源,释放锁,只有wait()可以释放锁
5. join():释放CPU资源,释放锁,底层调用wait(),所以才能释放锁
6. stop()suspend()resume()
7. run()、start()
8. get:-Id()、-Name()、-Priority()、-State()
9. set:-Name()、-Priority()、-Daemon()
10. is:-Daemon()、-Alive()
11. 中断:interrupt()
12. interrupted() (static方法)、isInterrupted()

2.4、synchronized内置锁和volatile关键字

1、synchronized
以前写的关于synchronized内置锁的文章
挺详细的,就不重复写了。

2、volatile
最低级别的同步锁,仅仅实现对共享资源的实时读取的效果,即可见性

volatile两个作用:

  1. 可见性:保证所有线程读取该共享变量时,都是读取到最新值
  2. 禁止指令重排序:保证在执行读或写volatile变量时,在该变量前所有命令都已经执行,在该变量后的所有命令都未执行。

程序猿的内心独白——这是一篇关于volatile的文章,比较详细,(后面我在自己整理一下关于volatile的文章,感觉不是很清晰)

3、整理一下:

  1. volatile是通过在volatile原子操作前 后 加Lock即内存屏障来实现上面两个功能的
  2. volatile只能保证实时读取,不能保证线程安全,不能保证写操作的正确性,还有不能解决多CPU的 并行写 问题

整理这里的两个细节:

  1. volatile原子操作:
    这是volatile的原子操作(读)
	volatile int i = 0;
	public static void main(String[] args)  {
		System.out.println(i);
	}

这不是volatile的原子操作(读、写),多线程操作时就会有可能出问题

	volatile int i = 0;
	public static void main(String[] args)  {
		System.out.println(++i);
	}
  1. volatile不能保证并行写的问题,但可以保证并行读的问题,注意是并行,不只是并发
    在单cpu操作volatile变量时,JVM不会给volatile语句加特殊的LOCk,就算多线程并发也是单cpu,但是当多CPU并行操作该volatile变量时,JVM会给变量加特殊的LOCK,以保证volatile的可见性的正确性,所以,volatile可以保证并行读的正确性
  2. volatile能不能保证原子性?
    只能保证一定程度上的原子性,即实时读取,不能保证对该变量的所有操作都是原子性。
  3. volatile能不能保证有序性?
    只能保证一定程度上的有序性,即volatile前面都执行了,后面都没执行,但不能保证前面或者后面的代码的有序性。

林夕-长——这是关于volatile的一些细节问题总结

4、使用 volatile的应用场景:

  1. 对变量的写操作不依赖于当前值。(因为它不能保证并发写的正确性)
  2. 该变量没有包含在具有其他变量的不变式中(只保证volatile变量的读原子操作)

个人觉得禁止指令重排序是实现可见性的基础

三、ThreadLocal

ThreadLocal的中文文档

ThreadLocal,很多地方叫做线程本地变量,也有些地方叫做线程本地存储.

但其实 ,ThreadLocal 更准确的说是个 线程数据副本调用器,而不是线程本地变量/存储

详细解释留到下面的 3.3、实现解析 再说,毕竟先用用再解释原理会多点实感

3.1、ThreadLocal的使用

ThreadLocal只有四个方法,使用起来较简单,分别是:

  1. get():返回该线程数据副本值,原文:返回此线程局部变量的当前线程副本中的值。
  2. set(T value): 获取该线程数据副本值,原文:将此线程局部变量的当前线程副本中的值设置为指定值。
  3. remove():移除该线程数据副本值,原文:移除此线程局部变量当前线程的值。
  4. initialValue():返回该线程数据副本值,原文:返回此线程局部变量的当前线程的“初始值”。

ThreadLocal的两种创建、get()、set()、remove():
(ThreadLocal的创建一般都是 + private static 的成员变量)

package com.Thread.ThreadLocal;

/**
 *类说明:演示ThreadLocal的使用
 */
public class UseThreadLocal {
	//第一种写法
	private static ThreadLocal<Integer> tLocal = new ThreadLocal<>();
//	private static ThreadLocal tLocal = new ThreadLocal<>();
	
	//第二种写法,一般都是用第二种,创建时自己设初始值
//	private static ThreadLocal tLocal = new ThreadLocal() {	//如果要写匿名类,new后必须加Integer实际类型,不能<>。
//		protected Integer initialValue() {
//			return 10;		//重写initialValue(),更改初始值,不改的话默认值是null
//		}
//	};
	
	public static void main(String[] args) {
		Runnable r1 = new Runnable() {
			public void run() {
//				int a = tLocal.get(); tLocal.set(++a); 
				tLocal.set((tLocal.get()+1));
				System.out.println(Thread.currentThread().getName()+": "+tLocal.get());
			}
		};
		for(int i=0;i<5;i++)
			new Thread(r1,"T-"+i).start();
//		用第一种的Integer泛型会报错,因为它默认值是null,
//		数值为null还拿去给变量赋值,就会报空指针异常
	}
}

第一种写法Integer类型结果:
线程的共享和协作_第10张图片

第一种写法String类型结果:
线程的共享和协作_第11张图片
第二种写法Integer类型结果:
线程的共享和协作_第12张图片

initialValue():

  • 供ThreadLocal需要初始化数据时使用,创建 和 remove()后对象为null时。
  • 使用:不可调用,创建时重写,起到更改默认值的作用。(像上面的第二种写法)

3.2、ThreadLocal的与synchronized的比较

ThreadLocal 和 synchronized 都用于解决多线程并发访问的问题,本质的区别在于:多线程并发访问操作的变化是否会相互影响。

  • ThreadLocal:为每一个线程创建各自的线程数据副本,各自操作各自的数据,互不影响。(每个人都有自己的游戏账号,各玩各的)
  • synchronized:所有线程都是用同一个数据,每个线程的操作都会影响到其他线程的操作。(所有人用同一个游戏账号,大家一起玩)

ThreadLocal利用静态内部类ThreadLocalMap提供线程副本变量。
synchronized通过锁来实现多线程并发访问同一个共享变量时的数据安全性。

3.3、ThreadLocal的实现解析

1.ThreadLocal 本身:

为什么说 :ThreadLocal 更准确的说是个 线程数据副本调用器,而不是线程本地变量/存储?

线程本地变量/存储,实际上是ThreadLocal的静态内部类ThreadLocalMap。
线程的共享和协作_第13张图片

你可以把ThreadLocal看成单纯的这样的一个类:集合了 多个使用 一张key—value表 的方法 的类。emmm,就一些方法而已。

ThreadLocal最特殊的地方在于:它本身不保存任何数据,是的,上面的key-value表并不是ThreadLocal对象的成员变量,value,key它都不会保存,所以才说ThreadLocal是一个 线程数据副本调用器,而不是线程副本类

2.ThreadLocal 使用的key—value表:以ThreadLocal自身作为key

ThreadLocal 的key—value表:ThreadLocalMap的成员变量Entry(ThreadLocal,Object)数组

ThreadLocalMap是ThreadLocal的静态内部类,Entry是ThreadLocalMap的静态内部类。

所以实际上是存储在ThreadLocalMap类中的Entry对象数组中

Entry:

  • key:ThreadLocal类型,当前使用的ThreadLocal对象
  • value:Object,你所要存储的数据对象(但是ThreadLocal用了泛型,而泛型参数都是引用对象,所以别int,要用Integer)
    线程的共享和协作_第14张图片

线程的共享和协作_第15张图片

问题1:为什么不说ThreadLocal类是线程本地变量,或者Entry类才是线程本地变量?
实际存储是在ThreadLocalMap类中,不是ThreadLoca类,也不是Entry类。
存储地方是在ThreadLocalMap中的成员变量Entry数组中,而ThreadLocal中并没有ThreadLocalMap成员变量,Entry更是个简单的类而已,就一个骨架。

问题2:ThreadLocalMap又是在哪里呢?我们直接使用的只是ThreadLocal,又不是ThreadLocalMap。
这就是我为什么说ThreadLocal实际上是个 线程数据副本调用器 的原因
Thread线程类有一个成员变量ThreadLocalMap,JDK注明该成员变量就是用来给ThreadLocal类使用的。
我们调用ThreadLocal类实际上就是在通过ThreadLocal的方法去使用对应线程的ThreadLocalMap成员变量,所以ThreadLocal只是个调用器,而不是线程本地副本,线程本地副本实际上是线程自身的ThreadLocalMap成员变量。

线程的共享和协作_第16张图片
3、调用流程

调用流程用get()说一遍吧,set()差不多就不写了
想看ThreadLocal类源码的点这里

get():

  1. 通过当前线程对象,获取当前线程的线程本地副本,直白点就是获取自身线程的线程本地副本线程的共享和协作_第17张图片
    线程的共享和协作_第18张图片
    线程的共享和协作_第19张图片
  2. 判断线程本地副本ThreadLocalMap是否为null,是null,说该线程没有任何本地副本,自然没有我们使用的ThreadLocal的对应副本,就会重新初始化副本值,并返回初始值
    线程的共享和协作_第20张图片
  3. 本地副本ThreadLocalMap不为空时,用我们使用的ThreadLocal对象作为key,查询是否有对应的线程副本存储值,有就返回,没有就会跟上一步一样,重新初始化副本值,并返回初始值
    线程的共享和协作_第21张图片

3.4、ThreadLocal不规范使用导致的内存泄漏分析

内存泄漏涉及到对象引用的知识,这里简单写一下

1、对象引用:

1.1 引用种类:

  1. 强引用:必需的对象引用,只要强引用还在,垃圾回收器就不会回收被引用的实例 。( 类似Object o = new Object(); 后面的new Object()实例不会被回收,直到程序结束才会回收)
  2. 软引用:有用但不是必需的对象引用。(在系统内存不足即将发生内存溢出时才会回收,如果回收后还不足就会抛出内存溢出异常)
  3. 弱引用:指不重要的对象引用,只要发生垃圾回收,它就会被回收
  4. 虚引用:也称为幽灵引用或者幻影引用,它是最弱的一种引用关系。一个对象实例是否有虚引用的存在,完全不会对其生存时间构成影响,也无法通过虚引用
    来取得一个对象实例
    。为一个对象设置虚引用关联的唯一目的就是能在这个对象
    实例被收集器回收时收到一个系统通知。

写法:
在这里插入图片描述

1.2 建立引用
Object o = new Object();的三步骤:
      Object o ——> 在栈中生成一个对象
      new Object() ——> 在堆中生成一个对象实例
      =(赋值) ——> 在 o 与 对象实例 之间 建立引用

所以Object o = null;——>在栈中生成了一个对象,却没有生成实例和建立引用

2、ThreadLocalMap的存储方式
Entry(弱引用的ThreadLocal,强引用的value)
线程的共享和协作_第22张图片
Entry的key是弱引用,那么在程序运行时如果发生垃圾回收,那么Entry的Key就会被回收(null)
这个时候问题就来了,Entry [ ]的元素Entry类型是存储两个值的,例如Entry [0] 的 key虽然被置为null了,但value没有。

那么Entry [0] 因为value不为空,它就不会被当成null,但是Entry [0]因为key为null,实际上已经是没用的垃圾,空占空间(value的大小)。

这就是ThreadLocal的内存泄漏问题的根源

解决办法;remove()——>及时清除不用的线程本地副本,用完就删

3.5、ThreadLocal错误使用导致的线程不安全问题

使用ThreadLocal存储数据到线程本地变量时,存储的数据不能是static修饰的

原因:static变量是唯一引用实例,就是使用了static后,不管你怎么写,你用的都会是同一个实例
而ThreadLocal的本质是通过ThreadLocalMap实现不同的线程本地副本,自然会出现线程不安全问题

加了static后就跟没写ThreadLocal一样,就不演示了

四、线程的等待和通知机制

wait()会释放锁

  1. 锁. wait():不限时间的等待,就一直等待
  2. 锁. wait(long a):最多等待a毫秒,时间到了会自动醒来
  3. 锁. wait(long a,int b):最多等待a毫秒 + b纳秒,时间到了会自动醒来
  4. 锁. notify():随机唤醒,少用
  5. 锁. notifyAll():全唤醒,多用




(返回 调用流程)ThreadLocal全文源码:

* Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
 * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
 */

package java.lang;
import java.lang.ref.*;
import java.util.Objects;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.function.Supplier;

/**
 * This class provides thread-local variables.  These variables differ from
 * their normal counterparts in that each thread that accesses one (via its
 * {@code get} or {@code set} method) has its own, independently initialized
 * copy of the variable.  {@code ThreadLocal} instances are typically private
 * static fields in classes that wish to associate state with a thread (e.g.,
 * a user ID or Transaction ID).
 *
 * 

For example, the class below generates unique identifiers local to each * thread. * A thread's id is assigned the first time it invokes {@code ThreadId.get()} * and remains unchanged on subsequent calls. *

 * import java.util.concurrent.atomic.AtomicInteger;
 *
 * public class ThreadId {
 *     // Atomic integer containing the next thread ID to be assigned
 *     private static final AtomicInteger nextId = new AtomicInteger(0);
 *
 *     // Thread local variable containing each thread's ID
 *     private static final ThreadLocal<Integer> threadId =
 *         new ThreadLocal<Integer>() {
 *             @Override protected Integer initialValue() {
 *                 return nextId.getAndIncrement();
 *         }
 *     };
 *
 *     // Returns the current thread's unique ID, assigning it if necessary
 *     public static int get() {
 *         return threadId.get();
 *     }
 * }
 * 
*

Each thread holds an implicit reference to its copy of a thread-local * variable as long as the thread is alive and the {@code ThreadLocal} * instance is accessible; after a thread goes away, all of its copies of * thread-local instances are subject to garbage collection (unless other * references to these copies exist). * * @author Josh Bloch and Doug Lea * @since 1.2 */ public class ThreadLocal<T> { /** * ThreadLocals rely on per-thread linear-probe hash maps attached * to each thread (Thread.threadLocals and * inheritableThreadLocals). The ThreadLocal objects act as keys, * searched via threadLocalHashCode. This is a custom hash code * (useful only within ThreadLocalMaps) that eliminates collisions * in the common case where consecutively constructed ThreadLocals * are used by the same threads, while remaining well-behaved in * less common cases. */ private final int threadLocalHashCode = nextHashCode(); /** * The next hash code to be given out. Updated atomically. Starts at * zero. */ private static AtomicInteger nextHashCode = new AtomicInteger(); /** * The difference between successively generated hash codes - turns * implicit sequential thread-local IDs into near-optimally spread * multiplicative hash values for power-of-two-sized tables. */ private static final int HASH_INCREMENT = 0x61c88647; /** * Returns the next hash code. */ private static int nextHashCode() { return nextHashCode.getAndAdd(HASH_INCREMENT); } /** * Returns the current thread's "initial value" for this * thread-local variable. This method will be invoked the first * time a thread accesses the variable with the {@link #get} * method, unless the thread previously invoked the {@link #set} * method, in which case the {@code initialValue} method will not * be invoked for the thread. Normally, this method is invoked at * most once per thread, but it may be invoked again in case of * subsequent invocations of {@link #remove} followed by {@link #get}. * *

This implementation simply returns {@code null}; if the * programmer desires thread-local variables to have an initial * value other than {@code null}, {@code ThreadLocal} must be * subclassed, and this method overridden. Typically, an * anonymous inner class will be used. * * @return the initial value for this thread-local */ protected T initialValue() { return null; } /** * Creates a thread local variable. The initial value of the variable is * determined by invoking the {@code get} method on the {@code Supplier}. * * @param the type of the thread local's value * @param supplier the supplier to be used to determine the initial value * @return a new thread local variable * @throws NullPointerException if the specified supplier is null * @since 1.8 */ public static <S> ThreadLocal<S> withInitial(Supplier<? extends S> supplier) { return new SuppliedThreadLocal<>(supplier); } /** * Creates a thread local variable. * @see #withInitial(java.util.function.Supplier) */ public ThreadLocal() { } /** * Returns the value in the current thread's copy of this * thread-local variable. If the variable has no value for the * current thread, it is first initialized to the value returned * by an invocation of the {@link #initialValue} method. * * @return the current thread's value of this thread-local */ public T get() { Thread t = Thread.currentThread(); ThreadLocalMap map = getMap(t); if (map != null) { ThreadLocalMap.Entry e = map.getEntry(this); if (e != null) { @SuppressWarnings("unchecked") T result = (T)e.value; return result; } } return setInitialValue(); } /** * Variant of set() to establish initialValue. Used instead * of set() in case user has overridden the set() method. * * @return the initial value */ private T setInitialValue() { T value = initialValue(); Thread t = Thread.currentThread(); ThreadLocalMap map = getMap(t); if (map != null) map.set(this, value); else createMap(t, value); return value; } /** * Sets the current thread's copy of this thread-local variable * to the specified value. Most subclasses will have no need to * override this method, relying solely on the {@link #initialValue} * method to set the values of thread-locals. * * @param value the value to be stored in the current thread's copy of * this thread-local. */ public void set(T value) { Thread t = Thread.currentThread(); ThreadLocalMap map = getMap(t); if (map != null) map.set(this, value); else createMap(t, value); } /** * Removes the current thread's value for this thread-local * variable. If this thread-local variable is subsequently * {@linkplain #get read} by the current thread, its value will be * reinitialized by invoking its {@link #initialValue} method, * unless its value is {@linkplain #set set} by the current thread * in the interim. This may result in multiple invocations of the * {@code initialValue} method in the current thread. * * @since 1.5 */ public void remove() { ThreadLocalMap m = getMap(Thread.currentThread()); if (m != null) m.remove(this); } /** * Get the map associated with a ThreadLocal. Overridden in * InheritableThreadLocal. * * @param t the current thread * @return the map */ ThreadLocalMap getMap(Thread t) { return t.threadLocals; } /** * Create the map associated with a ThreadLocal. Overridden in * InheritableThreadLocal. * * @param t the current thread * @param firstValue value for the initial entry of the map */ void createMap(Thread t, T firstValue) { t.threadLocals = new ThreadLocalMap(this, firstValue); } /** * Factory method to create map of inherited thread locals. * Designed to be called only from Thread constructor. * * @param parentMap the map associated with parent thread * @return a map containing the parent's inheritable bindings */ static ThreadLocalMap createInheritedMap(ThreadLocalMap parentMap) { return new ThreadLocalMap(parentMap); } /** * Method childValue is visibly defined in subclass * InheritableThreadLocal, but is internally defined here for the * sake of providing createInheritedMap factory method without * needing to subclass the map class in InheritableThreadLocal. * This technique is preferable to the alternative of embedding * instanceof tests in methods. */ T childValue(T parentValue) { throw new UnsupportedOperationException(); } /** * An extension of ThreadLocal that obtains its initial value from * the specified {@code Supplier}. */ static final class SuppliedThreadLocal<T> extends ThreadLocal<T> { private final Supplier<? extends T> supplier; SuppliedThreadLocal(Supplier<? extends T> supplier) { this.supplier = Objects.requireNonNull(supplier); } @Override protected T initialValue() { return supplier.get(); } } /** * ThreadLocalMap is a customized hash map suitable only for * maintaining thread local values. No operations are exported * outside of the ThreadLocal class. The class is package private to * allow declaration of fields in class Thread. To help deal with * very large and long-lived usages, the hash table entries use * WeakReferences for keys. However, since reference queues are not * used, stale entries are guaranteed to be removed only when * the table starts running out of space. */ static class ThreadLocalMap { /** * The entries in this hash map extend WeakReference, using * its main ref field as the key (which is always a * ThreadLocal object). Note that null keys (i.e. entry.get() * == null) mean that the key is no longer referenced, so the * entry can be expunged from table. Such entries are referred to * as "stale entries" in the code that follows. */ static class Entry extends WeakReference<ThreadLocal<?>> { /** The value associated with this ThreadLocal. */ Object value; Entry(ThreadLocal<?> k, Object v) { super(k); value = v; } } /** * The initial capacity -- MUST be a power of two. */ private static final int INITIAL_CAPACITY = 16; /** * The table, resized as necessary. * table.length MUST always be a power of two. */ private Entry[] table; /** * The number of entries in the table. */ private int size = 0; /** * The next size value at which to resize. */ private int threshold; // Default to 0 /** * Set the resize threshold to maintain at worst a 2/3 load factor. */ private void setThreshold(int len) { threshold = len * 2 / 3; } /** * Increment i modulo len. */ private static int nextIndex(int i, int len) { return ((i + 1 < len) ? i + 1 : 0); } /** * Decrement i modulo len. */ private static int prevIndex(int i, int len) { return ((i - 1 >= 0) ? i - 1 : len - 1); } /** * Construct a new map initially containing (firstKey, firstValue). * ThreadLocalMaps are constructed lazily, so we only create * one when we have at least one entry to put in it. */ ThreadLocalMap(ThreadLocal<?> firstKey, Object firstValue) { table = new Entry[INITIAL_CAPACITY]; int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1); table[i] = new Entry(firstKey, firstValue); size = 1; setThreshold(INITIAL_CAPACITY); } /** * Construct a new map including all Inheritable ThreadLocals * from given parent map. Called only by createInheritedMap. * * @param parentMap the map associated with parent thread. */ private ThreadLocalMap(ThreadLocalMap parentMap) { Entry[] parentTable = parentMap.table; int len = parentTable.length; setThreshold(len); table = new Entry[len]; for (int j = 0; j < len; j++) { Entry e = parentTable[j]; if (e != null) { @SuppressWarnings("unchecked") ThreadLocal<Object> key = (ThreadLocal<Object>) e.get(); if (key != null) { Object value = key.childValue(e.value); Entry c = new Entry(key, value); int h = key.threadLocalHashCode & (len - 1); while (table[h] != null) h = nextIndex(h, len); table[h] = c; size++; } } } } /** * Get the entry associated with key. This method * itself handles only the fast path: a direct hit of existing * key. It otherwise relays to getEntryAfterMiss. This is * designed to maximize performance for direct hits, in part * by making this method readily inlinable. * * @param key the thread local object * @return the entry associated with key, or null if no such */ private Entry getEntry(ThreadLocal<?> key) { int i = key.threadLocalHashCode & (table.length - 1); Entry e = table[i]; if (e != null && e.get() == key) return e; else return getEntryAfterMiss(key, i, e); } /** * Version of getEntry method for use when key is not found in * its direct hash slot. * * @param key the thread local object * @param i the table index for key's hash code * @param e the entry at table[i] * @return the entry associated with key, or null if no such */ private Entry getEntryAfterMiss(ThreadLocal<?> key, int i, Entry e) { Entry[] tab = table; int len = tab.length; while (e != null) { ThreadLocal<?> k = e.get(); if (k == key) return e; if (k == null) expungeStaleEntry(i); else i = nextIndex(i, len); e = tab[i]; } return null; } /** * Set the value associated with key. * * @param key the thread local object * @param value the value to be set */ private void set(ThreadLocal<?> key, Object value) { // We don't use a fast path as with get() because it is at // least as common to use set() to create new entries as // it is to replace existing ones, in which case, a fast // path would fail more often than not. Entry[] tab = table; int len = tab.length; int i = key.threadLocalHashCode & (len-1); for (Entry e = tab[i]; e != null; e = tab[i = nextIndex(i, len)]) { ThreadLocal<?> k = e.get(); if (k == key) { e.value = value; return; } if (k == null) { replaceStaleEntry(key, value, i); return; } } tab[i] = new Entry(key, value); int sz = ++size; if (!cleanSomeSlots(i, sz) && sz >= threshold) rehash(); } /** * Remove the entry for key. */ private void remove(ThreadLocal<?> key) { Entry[] tab = table; int len = tab.length; int i = key.threadLocalHashCode & (len-1); for (Entry e = tab[i]; e != null; e = tab[i = nextIndex(i, len)]) { if (e.get() == key) { e.clear(); expungeStaleEntry(i); return; } } } /** * Replace a stale entry encountered during a set operation * with an entry for the specified key. The value passed in * the value parameter is stored in the entry, whether or not * an entry already exists for the specified key. * * As a side effect, this method expunges all stale entries in the * "run" containing the stale entry. (A run is a sequence of entries * between two null slots.) * * @param key the key * @param value the value to be associated with key * @param staleSlot index of the first stale entry encountered while * searching for key. */ private void replaceStaleEntry(ThreadLocal<?> key, Object value, int staleSlot) { Entry[] tab = table; int len = tab.length; Entry e; // Back up to check for prior stale entry in current run. // We clean out whole runs at a time to avoid continual // incremental rehashing due to garbage collector freeing // up refs in bunches (i.e., whenever the collector runs). int slotToExpunge = staleSlot; for (int i = prevIndex(staleSlot, len); (e = tab[i]) != null; i = prevIndex(i, len)) if (e.get() == null) slotToExpunge = i; // Find either the key or trailing null slot of run, whichever // occurs first for (int i = nextIndex(staleSlot, len); (e = tab[i]) != null; i = nextIndex(i, len)) { ThreadLocal<?> k = e.get(); // If we find key, then we need to swap it // with the stale entry to maintain hash table order. // The newly stale slot, or any other stale slot // encountered above it, can then be sent to expungeStaleEntry // to remove or rehash all of the other entries in run. if (k == key) { e.value = value; tab[i] = tab[staleSlot]; tab[staleSlot] = e; // Start expunge at preceding stale entry if it exists if (slotToExpunge == staleSlot) slotToExpunge = i; cleanSomeSlots(expungeStaleEntry(slotToExpunge), len); return; } // If we didn't find stale entry on backward scan, the // first stale entry seen while scanning for key is the // first still present in the run. if (k == null && slotToExpunge == staleSlot) slotToExpunge = i; } // If key not found, put new entry in stale slot tab[staleSlot].value = null; tab[staleSlot] = new Entry(key, value); // If there are any other stale entries in run, expunge them if (slotToExpunge != staleSlot) cleanSomeSlots(expungeStaleEntry(slotToExpunge), len); } /** * Expunge a stale entry by rehashing any possibly colliding entries * lying between staleSlot and the next null slot. This also expunges * any other stale entries encountered before the trailing null. See * Knuth, Section 6.4 * * @param staleSlot index of slot known to have null key * @return the index of the next null slot after staleSlot * (all between staleSlot and this slot will have been checked * for expunging). */ private int expungeStaleEntry(int staleSlot) { Entry[] tab = table; int len = tab.length; // expunge entry at staleSlot tab[staleSlot].value = null; tab[staleSlot] = null; size--; // Rehash until we encounter null Entry e; int i; for (i = nextIndex(staleSlot, len); (e = tab[i]) != null; i = nextIndex(i, len)) { ThreadLocal<?> k = e.get(); if (k == null) { e.value = null; tab[i] = null; size--; } else { int h = k.threadLocalHashCode & (len - 1); if (h != i) { tab[i] = null; // Unlike Knuth 6.4 Algorithm R, we must scan until // null because multiple entries could have been stale. while (tab[h] != null) h = nextIndex(h, len); tab[h] = e; } } } return i; } /** * Heuristically scan some cells looking for stale entries. * This is invoked when either a new element is added, or * another stale one has been expunged. It performs a * logarithmic number of scans, as a balance between no * scanning (fast but retains garbage) and a number of scans * proportional to number of elements, that would find all * garbage but would cause some insertions to take O(n) time. * * @param i a position known NOT to hold a stale entry. The * scan starts at the element after i. * * @param n scan control: {@code log2(n)} cells are scanned, * unless a stale entry is found, in which case * {@code log2(table.length)-1} additional cells are scanned. * When called from insertions, this parameter is the number * of elements, but when from replaceStaleEntry, it is the * table length. (Note: all this could be changed to be either * more or less aggressive by weighting n instead of just * using straight log n. But this version is simple, fast, and * seems to work well.) * * @return true if any stale entries have been removed. */ private boolean cleanSomeSlots(int i, int n) { boolean removed = false; Entry[] tab = table; int len = tab.length; do { i = nextIndex(i, len); Entry e = tab[i]; if (e != null && e.get() == null) { n = len; removed = true; i = expungeStaleEntry(i); } } while ( (n >>>= 1) != 0); return removed; } /** * Re-pack and/or re-size the table. First scan the entire * table removing stale entries. If this doesn't sufficiently * shrink the size of the table, double the table size. */ private void rehash() { expungeStaleEntries(); // Use lower threshold for doubling to avoid hysteresis if (size >= threshold - threshold / 4) resize(); } /** * Double the capacity of the table. */ private void resize() { Entry[] oldTab = table; int oldLen = oldTab.length; int newLen = oldLen * 2; Entry[] newTab = new Entry[newLen]; int count = 0; for (int j = 0; j < oldLen; ++j) { Entry e = oldTab[j]; if (e != null) { ThreadLocal<?> k = e.get(); if (k == null) { e.value = null; // Help the GC } else { int h = k.threadLocalHashCode & (newLen - 1); while (newTab[h] != null) h = nextIndex(h, newLen); newTab[h] = e; count++; } } } setThreshold(newLen); size = count; table = newTab; } /** * Expunge all stale entries in the table. */ private void expungeStaleEntries() { Entry[] tab = table; int len = tab.length; for (int j = 0; j < len; j++) { Entry e = tab[j]; if (e != null && e.get() == null) expungeStaleEntry(j); } } } }

回到顶部

你可能感兴趣的:(并发编程,java,多线程)