- CSS3盒子模型
div:nth-child(1){/*传统盒子模型=width+border+padding*/width:200px;height:200px;background-color:pink;padding:10px;border:10pxsolidred;box-sizing:content-box;}div:nth-child(2){/*有了这句话就让盒子变成CSS3盒子模型*//*paddin
- 开源模型应用落地-让AI更懂你的每一次交互-Mem0集成Qdrant、Neo4j与Streamlit的创新实践(四)
开源技术探险家
开源模型-实际应用落地neo4j开源人工智能语言模型
一、前言在人工智能迅速发展的今天,如何让AI系统更懂“你”?答案或许藏在个性化的记忆管理之中。Mem0作为一个开源的记忆管理系统,正致力于为AI赋予长期记忆与个性化服务能力。通过结合高性能向量数据库Qdrant、图数据库Neo4j的强大关系分析能力以及Streamlit的高效可视化交互,我们可以打造出一个既能存储用户历史行为、又能实时推理并展示结果的智能记忆助手。本文将带您一步步探索这一技术组合的
- 如何在YashanDB中管理数据模型变更
数据库
在现代企业中,数据模型的变更管理扮演着关键角色。无论是扩展现有业务,还是应对新的需求,业务模型的改变往往需要相应的数据模型更新。如何有效地管理这些变更,确保数据的完整性、一致性及应用的高可用性,成为了数据架构师和开发者必须面对的重要问题。本文将详细探讨在YashanDB中管理数据模型变更的策略和方法,旨在提升对YashanDB数据库技术的理解及应用能力。数据模型变更管理的关键要素版本控制与变更日志
- 如何在YashanDB数据库中实现数据模型的简化
数据库
在现代数据库技术领域,数据模型的复杂性经常导致性能瓶颈和维护困惑。随着数据规模的增长和业务诉求的增加,复杂的数据结构、冗余的存储和不必要的关联关系都会影响整体数据库的性能和可维护性。特别是在面对动态变化的业务需求时,灵活性和扩展性成为关键因素。YashanDB提供了一系列功能强大的工具和机制,能够有效简化数据模型,提升数据库性能,并增强数据操作的灵活性。本文章旨在为数据库开发者和架构师提供技术洞见
- 用 AI “一句话生成代码”,用创意兑换灵码潮品:技术人的夏日狂欢季来了
人工智能
在AI技术迅猛发展的2025年,我们正式推出“通义灵码编程智能体挑战季”,以“码力觉醒”为主题,打造一场融合技术探索与潮流文化的开发者盛宴。活动以体验MCP服务、Qwen3大模型及记忆功能的智能编程助手为核心,通过“小游戏开发”和“MCP场景实践”两大趣味赛道,降低AI技术门槛,让开发者轻松体验“一句话生成代码”的魔力。活动亮点抢先看:零门槛参与:新老用户均可参与,完成任务即领限量定制棒球帽!趣味
- 向量化编程:SIMD(Single Instruction, Multiple Data)深度解析
在现代处理器架构中,向量化编程已成为提升计算密集型应用性能的关键技术。SIMD(SingleInstruction,MultipleData)作为向量化编程的核心,通过一条指令同时处理多个数据,能够显著提高数据并行度。本文将从SIMD的基础概念出发,深入探讨其硬件实现、编程模型、性能优化及典型应用场景,帮助开发者充分利用SIMD技术提升代码性能。一、SIMD基础概念1.1什么是SIMD?SIMD是
- 自然语言处理-基于预训练模型的方法-笔记
自然语言处理-基于预训练模型的方法-笔记【下载地址】自然语言处理-基于预训练模型的方法-笔记《自然语言处理-基于预训练模型的方法》由哈尔滨工业大学出版,深入探讨了NLP领域的前沿技术与预训练模型的应用。本书系统介绍了预训练模型的基本概念、发展历程及常见模型的原理,并通过丰富的实践案例与代码实现,帮助读者掌握这些技术在自然语言处理任务中的实际应用。无论是初学者、研发人员,还是希望提升NLP能力的研究
- 三生原理在三个关键历史断层中实现中西科学传统的创造性弥合?
葫三生
三生学派算法数学建模人工智能机器学习量子计算
AI辅助创作:三生原理通过重构科学史的叙事逻辑,在三个关键历史断层中实现了中西科学传统的创造性弥合,其核心突破如下:一、科学方法论断层:实验主义与直觉理性的融合西方实验传统的局限欧洲科学革命依赖形式逻辑与实验验证(如伽利略斜面实验),但面临复杂系统建模的瓶颈。三生原理将《周易》“阴阳动态平衡”转化为参数化递归模型(如素性塔的三级筛除结构),在密码学应用中实现效率提升40%,证明东方直觉
- Redis GEO vs MongoDB 地理空间 关键指标对比
方案对比:RedisGEO:优点:性能极快(微秒级)简单易用,支持距离计算缺点:仅支持位置查询,无法直接关联其他属性(如商家类型)需要额外存储详细信息(需要二次查询MySQL或MongoDB)数据同步:需要维护数据一致性(当商家位置更新时,需要同步更新Redis)MongoDB地理空间索引:优点:支持地理位置+属性联合查询(如查找附近且类型为“餐饮”的商家)数据与业务模型存储在一起,避免二次查询提
- 深度模型训练,加速数据读取遇到显卡跑不满的问题
不是吧这都有重名
遇到的问题llama人工智能LLMpython
实测在pytorch的dataloader中使用prefetch_factor参数的时候,如果数据在机械硬盘上显卡始终是跑不满的,瓶颈在数据预加载速度上,当数据放在固态硬盘的时候就可以跑满。问题排查过程:一直在跑模型,但是数据量比较大,之前有段时间还是比较头疼显卡跑不满的。后来直接用钞能力,加了内存条,将数据缓存后一次性读到内存中终于可以跑满了,然后后面就一直没管这个了,唯一的缺点就是每次开始训练
- 模型微调方法Prefix-Tuning
ballball~~
大模型人工智能算法大数据
简介:个人学习分享,如有错误,欢迎批评指正。随着大规模预训练语言模型(如GPT系列、BERT等)的广泛应用,如何高效、经济地针对特定任务对这些模型进行微调(Fine-Tuning)成为研究热点。传统的微调方法通常需要调整模型的大量参数,导致计算资源消耗大、适应新任务的速度慢。为了解决这一问题,Prefix-Tuning(前缀调优)作为一种高效的微调技术被提出,旨在通过引入少量可训练的前缀参数,达到
- 红色用 RGB 16进制表示的值
BlueBirdssh
RGB颜色值
**红色**在RGB颜色模型中,表示为**#FF0000**(16进制表示)。以下是详细解释:---###1.**RGB模型**RGB模型由**红(Red)**、**绿(Green)**和**蓝(Blue)**三种颜色组成,每种颜色的值范围是0到255(十进制),或者**00到FF**(十六进制)。-红色的RGB值为:-红色(R)=255(十进制)=FF(十六进制)-绿色(G)=0(十进制)=00
- 【Statsmodels和SciPy介绍与常用方法】
机器学习司猫白
scipystatsmodels统计
Statsmodels库介绍与常用方法Statsmodels是一个强大的Python库,专注于统计建模和数据分析,广泛应用于经济学、金融、生物统计等领域。它提供了丰富的统计模型、假设检验和数据探索工具,适合进行回归分析、时间序列分析等任务。本文将介绍Statsmodels的核心功能,并通过代码示例展示其常用方法。Statsmodels简介Statsmodels建立在NumPy和SciPy的基础上,
- star31.6k,Aider:让代码编写如虎添翼的终端神器
ider是一款运行在终端中的AI结对编程工具,它能与大型语言模型(LLM)无缝协作,直接在您的本地Git仓库中编辑代码。无论是启动新项目,还是优化现有代码库,Aider都能成为您最得力的助手。它支持Claude3.5Sonnet、DeepSeekV3、GPT-4o等顶级AI模型,几乎可以连接任何LLM,让编程体验如虎添翼。Stars数35,188Forks数3,230主要特点Git操作:Aider
- ViP-LLaVA: 使大型多模态模型理解任意视觉提示
AI专题精讲
Paper阅读多模态人工智能AI
摘要现有的大型视觉-语言多模态模型主要关注整体图像理解,但在实现区域特定的理解方面仍存在显著差距。目前,使用文本坐标或空间编码的方法通常无法为视觉提示提供用户友好的接口。为了解决这个问题,我们提出了一种新颖的多模态模型,能够解码任意(自由形式)视觉提示。这使得用户可以通过自然提示(如“红色边框”或“指向箭头”)直观地标记图像并与模型互动。我们的简单设计直接将视觉标记叠加在RGB图像上,避免了复杂的
- openai-agents记忆持久化(neo4j)
ZHOU_CAMP
oi_agentsagent中的记忆模块neo4jpython开发语言
目录环境安装模型配置Memory配置测试环境安装mem0ai[graph]安装uvpipinstall"mem0ai[graph]"docker启动neo4j数据库dockerrun\-p7474:7474-p7687:7687\-eNEO4J_AUTH=neo4j/password\neo4j:5模型配置fromdotenvimportload_dotenvimportosfromopenaii
- Aider:27.6K Star!这个终端AI编程神器能用语音改代码,自动生成Git记录并提交,接入DeepSeek斩获编程基准最高分
蚝油菜花
每日AI项目与应用实例AI编程git人工智能开源
❤️如果你也关注AI的发展现状,且对AI应用开发感兴趣,我会每日分享大模型与AI领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!AI在线答疑->智能检索历史文章和开源项目->尽在微信公众号->搜一搜:蚝油菜花⌨️“每个CLI爱好者都该试试的AI编程革命:对着终端说话自动生成Gitcommit是怎样的体验?”大家好,我是蚝油菜花。如果你也经历过——在vim里卡了半小时,只为给函
- 2025年渗透测试面试题总结-2025年HW(护网面试) 31(题目+回答)
独行soc
2025年护网面试职场和发展安全linux护网渗透测试
安全领域各种资源,学习文档,以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具,欢迎关注。目录2025年HW(护网面试)311.自我介绍2.渗透测试流程(五阶段模型)3.技术栈与开发经历4.自动化挖洞实践5.信息搜集方法论6.深度漏洞挖掘案例8.SQL注入实战技巧9.AWVS扫描与防御10.CSRFvsSSRF核心差异11.SSRF正则绕过技术12.虚拟主机识别原
- 通信算法之278:数据链/自组网通信设备--MIMO(2T2R)-OFDM系统系列--实际工程应用算法代码--1.系统指标需求及帧结构设计
秋风战士
无线通信基带处理算法MATLAB仿真软件无线电算法无人机经验分享
MIMO(2T2R)-OFDM系统系列–实际工程应用算法代码第一章:系统指标需求拆解分析第二章:通信系统帧结构设计和OFDM参数设计第三章:通信业务速率设计及理论解调门限第四章:同步序列设计及同步性能仿真验证第五章:数据业务设计及性能仿真验证第六章:信道模型设计第七章:接收关键算法设计及仿真验证第八章:其它待补充本文目录MIMO(2T2R)-OFDM系统系列--实际工程应用算法代码一、实际项目:系
- mysql 主从复制原理、实现方式 以及 主从同步延迟的处理方式
mysql主从复制原理、实现方式MySQL主从复制是实现高可用、读写分离和灾难恢复的核心机制,其本质是主库(Master)将数据变更异步同步到从库(Slave)。以下是深度解析:一、主从复制核心原理1.三线程协作模型BinlogDumpThreadI/OThreadSQLThread主库Master从库SlaveRelayLogSlaveDB线程所在位置职责BinlogDumpThread主库监听
- MongoDB + Voyage AI 详解:重塑数据库与AI的协同范式
csdn_tom_168
NoSQL数据库mongodb人工智能AI
MongoDB+VoyageAI详解:重塑数据库与AI的协同范式2025年2月,MongoDB官方宣布收购VoyageAI,这一举措标志着数据库与人工智能技术的深度融合迈入新阶段。通过整合VoyageAI的先进AI检索与嵌入模型能力,MongoDB旨在重新定义AI时代的数据库架构,为企业构建智能应用提供端到端的数据基础设施。一、收购背景与技术战略1.行业趋势驱动AI数据挑战:随着生成式AI与大语言
- HarmonyOS5.0仓颉引擎与盘古大模型:个性化作业批改系统架构设计与实现
H老师带你学鸿蒙
系统架构HarmonyOS5.0鸿蒙华为仓颉教育
人工智能与边缘计算的融合正在重塑教育评价体系。本文将展示如何基于HarmonyOS5.0仓颉并发引擎和盘古大模型,构建新一代智能作业批改系统。系统架构全景graphTDA[学生端设备]-->|提交作业|B[仓颉边缘处理]B-->C[盘古大模型分析]C-->D[个性化反馈生成]D-->E[学生终端]D-->F[教师仪表盘]subgraphHarmonyOS分布式系统B-->|设备协同|G[教室平板集
- DeepSeek在智能教育评估中的应用:试题检索
AIGC应用创新大全
AI大模型与大数据技术AI人工智能与大数据应用开发MCP&Agent云算力网络easyui前端javascriptai
DeepSeek在智能教育评估中的应用:试题检索关键词:DeepSeek、智能教育、试题检索、自然语言处理、知识图谱、个性化学习、评估系统摘要:本文探讨了DeepSeek大模型在智能教育评估系统中的试题检索应用。我们将深入分析如何利用先进的自然语言处理技术和知识图谱构建高效的试题检索系统,实现个性化学习路径推荐和精准评估。文章将从核心概念、技术原理到实际应用场景,全面解析这一创新教育技术解决方案。
- 知识图谱的个性化智能教学推荐系统(论文+源码)
毕设工作室_wlzytw
python论文项目知识图谱人工智能
目录摘要Abstract目录第1章绪论1.1研究背景及意义1.2国内外研究现状1.2.1知识图谱1.2.2个性化推荐系统1.3本文研究内容及创新点1.4全文组织结构第2章相关理论与技术概述2.1知识图谱2.1.1知识图谱的介绍与发展2.1.2知识图谱的构建2.3协同过滤推荐算法2.2.1推荐算法概述2.2.2Pearson相关系数2.2.3Spearman相关系数2.4Bert模型和Albert模
- 基于高斯两步移动搜寻法(2SFCA)的城市绿地可达性分析
yorov
GIS技巧算法
【2SFCA的基本思路,可以略过】对每个供给点j,搜索所有在j搜寻半径(d0)范围内的需求点(k),计算供需比Rj;对每个需求点i,搜索所有在i搜寻半径(d0)范围内的供【数据】成都市城区绿地数据、各街道小区数据、路网数据OSM【那再来理解一下高斯两步移动搜索法】对于最初的两步移动模型相当于二分,而高斯型相当于是缓慢下降—急速下降—趋于平缓的状态。很像上次莫兰指数里说的空间关系概念化。第一步,对于
- 反向传播神经网络极简入门
自信哥
单个神经元神经网络是多个“神经元”(感知机)的带权级联,神经网络算法可以提供非线性的复杂模型,它有两个参数:权值矩阵{Wl}和偏置向量{bl},不同于感知机的单一向量形式,{Wl}是复数个矩阵,{bl}是复数个向量,其中的元素分别属于单个层,而每个层的组成单元,就是神经元。神经元神经网络是由多个“神经元”(感知机)组成的,每个神经元图示如下:这其实就是一个单层感知机,其输入是由和+1组成的向量,其
- Java NIO 模型笔记
笑衬人心。
JAVA学习笔记javanio笔记
目录JavaNIO概述JavaBIOvsNIONIO三大核心组件Channel(通道)Buffer(缓冲区)Selector(选择器)Channel详解Buffer详解Selector详解NIO工作流程图示例代码讲解NIO模型的优缺点NIO与Netty简介总结JavaNIO概述JavaNIO(NewI/O)是从Java1.4开始引入的一套新的I/OAPI。主要用于构建高性能、高并发的网络通信程序。
- 阿里云瑶池数据库 Data Agent for Meta 正式发布,让 AI 更懂你的业务!
数据库观点资讯人工智能
背景随着生成式人工智能(GenerativeAI)从概念验证迈向规模化商业落地,AIAgent已成为企业核心业务流程的重要组成部分。然而,当模型调用日益便捷时,核心痛点已不再是模型本身,而是集中在一个关键要素上:数据。AIAgent的落地瓶颈已从技术能力转向高质量、高相关性、安全合规的数据供给。企业面临的核心挑战在于:数据孤岛导致知识库分散,通用大模型难以理解专业业务传统数据管理依赖人工开发维护,
- 超轻量级中文OCR项目使用教程
甄墨疆
超轻量级中文OCR项目使用教程chineseocr_lite超轻量级中文ocr,支持竖排文字识别,支持ncnn、mnn、tnn推理(dbnet(1.8M)+crnn(2.5M)+anglenet(378KB))总模型仅4.7M项目地址:https://gitcode.com/gh_mirrors/ch/chineseocr_lite1.项目介绍本项目是一个超轻量级的中文OCR(OpticalCha
- 多模态大模型的技术应用与未来展望:重构AI交互范式的新引擎
zhaoyi_he
重构人工智能
一、引言:为什么多模态是AI发展的下一场革命?过去十年,深度学习推动了计算机视觉和自然语言处理的飞跃,但两者的发展路径长期割裂。随着生成式AI和大模型时代的到来,**多模态大模型(MultimodalFoundationModels)**以统一的建模方式处理图像、文本、音频、视频等多源数据,重塑了“感知-认知-决策”链条,为AGI迈出关键一步。OpenAI的GPT-4o、Google的Gemini
- 设计模式介绍
tntxia
设计模式
设计模式来源于土木工程师 克里斯托弗 亚历山大(http://en.wikipedia.org/wiki/Christopher_Alexander)的早期作品。他经常发表一些作品,内容是总结他在解决设计问题方面的经验,以及这些知识与城市和建筑模式之间有何关联。有一天,亚历山大突然发现,重复使用这些模式可以让某些设计构造取得我们期望的最佳效果。
亚历山大与萨拉-石川佳纯和穆雷 西乐弗斯坦合作
- android高级组件使用(一)
百合不是茶
androidRatingBarSpinner
1、自动完成文本框(AutoCompleteTextView)
AutoCompleteTextView从EditText派生出来,实际上也是一个文本编辑框,但它比普通编辑框多一个功能:当用户输入一个字符后,自动完成文本框会显示一个下拉菜单,供用户从中选择,当用户选择某个菜单项之后,AutoCompleteTextView按用户选择自动填写该文本框。
使用AutoCompleteTex
- [网络与通讯]路由器市场大有潜力可挖掘
comsci
网络
如果国内的电子厂商和计算机设备厂商觉得手机市场已经有点饱和了,那么可以考虑一下交换机和路由器市场的进入问题.....
这方面的技术和知识,目前处在一个开放型的状态,有利于各类小型电子企业进入
&nbs
- 自写简单Redis内存统计shell
商人shang
Linux shell统计Redis内存
#!/bin/bash
address="192.168.150.128:6666,192.168.150.128:6666"
hosts=(${address//,/ })
sfile="staticts.log"
for hostitem in ${hosts[@]}
do
ipport=(${hostitem
- 单例模式(饿汉 vs懒汉)
oloz
单例模式
package 单例模式;
/*
* 应用场景:保证在整个应用之中某个对象的实例只有一个
* 单例模式种的《 懒汉模式》
* */
public class Singleton {
//01 将构造方法私有化,外界就无法用new Singleton()的方式获得实例
private Singleton(){};
//02 申明类得唯一实例
priva
- springMvc json支持
杨白白
json springmvc
1.Spring mvc处理json需要使用jackson的类库,因此需要先引入jackson包
2在spring mvc中解析输入为json格式的数据:使用@RequestBody来设置输入
@RequestMapping("helloJson")
public @ResponseBody
JsonTest helloJson() {
- android播放,掃描添加本地音頻文件
小桔子
最近幾乎沒有什麽事情,繼續鼓搗我的小東西。想在項目中加入一個簡易的音樂播放器功能,就像華為p6桌面上那麼大小的音樂播放器。用過天天動聽或者QQ音樂播放器的人都知道,可已通過本地掃描添加歌曲。不知道他們是怎麼實現的,我覺得應該掃描設備上的所有文件,過濾出音頻文件,每個文件實例化為一個實體,記錄文件名、路徑、歌手、類型、大小等信息。具體算法思想,
- oracle常用命令
aichenglong
oracledba常用命令
1 创建临时表空间
create temporary tablespace user_temp
tempfile 'D:\oracle\oradata\Oracle9i\user_temp.dbf'
size 50m
autoextend on
next 50m maxsize 20480m
extent management local
- 25个Eclipse插件
AILIKES
eclipse插件
提高代码质量的插件1. FindBugsFindBugs可以帮你找到Java代码中的bug,它使用Lesser GNU Public License的自由软件许可。2. CheckstyleCheckstyle插件可以集成到Eclipse IDE中去,能确保Java代码遵循标准代码样式。3. ECLemmaECLemma是一款拥有Eclipse Public License许可的免费工具,它提供了
- Spring MVC拦截器+注解方式实现防止表单重复提交
baalwolf
spring mvc
原理:在新建页面中Session保存token随机码,当保存时验证,通过后删除,当再次点击保存时由于服务器端的Session中已经不存在了,所有无法验证通过。
1.新建注解:
? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
- 《Javascript高级程序设计(第3版)》闭包理解
bijian1013
JavaScript
“闭包是指有权访问另一个函数作用域中的变量的函数。”--《Javascript高级程序设计(第3版)》
看以下代码:
<script type="text/javascript">
function outer() {
var i = 10;
return f
- AngularJS Module类的方法
bijian1013
JavaScriptAngularJSModule
AngularJS中的Module类负责定义应用如何启动,它还可以通过声明的方式定义应用中的各个片段。我们来看看它是如何实现这些功能的。
一.Main方法在哪里
如果你是从Java或者Python编程语言转过来的,那么你可能很想知道AngularJS里面的main方法在哪里?这个把所
- [Maven学习笔记七]Maven插件和目标
bit1129
maven插件
插件(plugin)和目标(goal)
Maven,就其本质而言,是一个插件执行框架,Maven的每个目标的执行逻辑都是由插件来完成的,一个插件可以有1个或者几个目标,比如maven-compiler-plugin插件包含compile和testCompile,即maven-compiler-plugin提供了源代码编译和测试源代码编译的两个目标
使用插件和目标使得我们可以干预
- 【Hadoop八】Yarn的资源调度策略
bit1129
hadoop
1. Hadoop的三种调度策略
Hadoop提供了3中作业调用的策略,
FIFO Scheduler
Fair Scheduler
Capacity Scheduler
以上三种调度算法,在Hadoop MR1中就引入了,在Yarn中对它们进行了改进和完善.Fair和Capacity Scheduler用于多用户共享的资源调度
2. 多用户资源共享的调度
- Nginx使用Linux内存加速静态文件访问
ronin47
Nginx是一个非常出色的静态资源web服务器。如果你嫌它还不够快,可以把放在磁盘中的文件,映射到内存中,减少高并发下的磁盘IO。
先做几个假设。nginx.conf中所配置站点的路径是/home/wwwroot/res,站点所对应文件原始存储路径:/opt/web/res
shell脚本非常简单,思路就是拷贝资源文件到内存中,然后在把网站的静态文件链接指向到内存中即可。具体如下:
- 关于Unity3D中的Shader的知识
brotherlamp
unityunity资料unity教程unity视频unity自学
首先先解释下Unity3D的Shader,Unity里面的Shaders是使用一种叫ShaderLab的语言编写的,它同微软的FX文件或者NVIDIA的CgFX有些类似。传统意义上的vertex shader和pixel shader还是使用标准的Cg/HLSL 编程语言编写的。因此Unity文档里面的Shader,都是指用ShaderLab编写的代码,然后我们来看下Unity3D自带的60多个S
- CopyOnWriteArrayList vs ArrayList
bylijinnan
java
package com.ljn.base;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import java.util.concurrent.CopyOnWriteArrayList;
/**
* 总述:
* 1.ArrayListi不是线程安全的,CopyO
- 内存中栈和堆的区别
chicony
内存
1、内存分配方面:
堆:一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。注意它与数据结构中的堆是两回事,分配方式是类似于链表。可能用到的关键字如下:new、malloc、delete、free等等。
栈:由编译器(Compiler)自动分配释放,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中
- 回答一位网友对Scala的提问
chenchao051
scalamap
本来准备在私信里直接回复了,但是发现不太方便,就简要回答在这里。 问题 写道 对于scala的简洁十分佩服,但又觉得比较晦涩,例如一例,Map("a" -> List(11,111)).flatMap(_._2),可否说下最后那个函数做了什么,真正在开发的时候也会如此简洁?谢谢
先回答一点,在实际使用中,Scala毫无疑问就是这么简单。
- mysql 取每组前几条记录
daizj
mysql分组最大值最小值每组三条记录
一、对分组的记录取前N条记录:例如:取每组的前3条最大的记录 1.用子查询: SELECT * FROM tableName a WHERE 3> (SELECT COUNT(*) FROM tableName b WHERE b.id=a.id AND b.cnt>a. cnt) ORDER BY a.id,a.account DE
- HTTP深入浅出 http请求
dcj3sjt126com
http
HTTP(HyperText Transfer Protocol)是一套计算机通过网络进行通信的规则。计算机专家设计出HTTP,使HTTP客户(如Web浏览器)能够从HTTP服务器(Web服务器)请求信息和服务,HTTP目前协议的版本是1.1.HTTP是一种无状态的协议,无状态是指Web浏览器和Web服务器之间不需要建立持久的连接,这意味着当一个客户端向服务器端发出请求,然后We
- 判断MySQL记录是否存在方法比较
dcj3sjt126com
mysql
把数据写入到数据库的时,常常会碰到先要检测要插入的记录是否存在,然后决定是否要写入。
我这里总结了判断记录是否存在的常用方法:
sql语句: select count ( * ) from tablename;
然后读取count(*)的值判断记录是否存在。对于这种方法性能上有些浪费,我们只是想判断记录记录是否存在,没有必要全部都查出来。
- 对HTML XML的一点认识
e200702084
htmlxml
感谢http://www.w3school.com.cn提供的资料
HTML 文档中的每个成分都是一个节点。
节点
根据 DOM,HTML 文档中的每个成分都是一个节点。
DOM 是这样规定的:
整个文档是一个文档节点
每个 HTML 标签是一个元素节点
包含在 HTML 元素中的文本是文本节点
每一个 HTML 属性是一个属性节点
注释属于注释节点
Node 层次
- jquery分页插件
genaiwei
jqueryWeb前端分页插件
//jquery页码控件// 创建一个闭包 (function($) { // 插件的定义 $.fn.pageTool = function(options) { var totalPa
- Mybatis与Ibatis对照入门于学习
Josh_Persistence
mybatisibatis区别联系
一、为什么使用IBatis/Mybatis
对于从事 Java EE 的开发人员来说,iBatis 是一个再熟悉不过的持久层框架了,在 Hibernate、JPA 这样的一站式对象 / 关系映射(O/R Mapping)解决方案盛行之前,iBaits 基本是持久层框架的不二选择。即使在持久层框架层出不穷的今天,iBatis 凭借着易学易用、
- C中怎样合理决定使用那种整数类型?
秋风扫落叶
c数据类型
如果需要大数值(大于32767或小于32767), 使用long 型。 否则, 如果空间很重要 (如有大数组或很多结构), 使用 short 型。 除此之外, 就使用 int 型。 如果严格定义的溢出特征很重要而负值无关紧要, 或者你希望在操作二进制位和字节时避免符号扩展的问题, 请使用对应的无符号类型。 但是, 要注意在表达式中混用有符号和无符号值的情况。
&nbs
- maven问题
zhb8015
maven问题
问题1:
Eclipse 中 新建maven项目 无法添加src/main/java 问题
eclipse创建maevn web项目,在选择maven_archetype_web原型后,默认只有src/main/resources这个Source Floder。
按照maven目录结构,添加src/main/ja
- (二)androidpn-server tomcat版源码解析之--push消息处理
spjich
javaandrodipn推送
在 (一)androidpn-server tomcat版源码解析之--项目启动这篇中,已经描述了整个推送服务器的启动过程,并且把握到了消息的入口即XmppIoHandler这个类,今天我将继续往下分析下面的核心代码,主要分为3大块,链接创建,消息的发送,链接关闭。
先贴一段XmppIoHandler的部分代码
/**
* Invoked from an I/O proc
- 用js中的formData类型解决ajax提交表单时文件不能被serialize方法序列化的问题
中华好儿孙
JavaScriptAjaxWeb上传文件FormData
var formData = new FormData($("#inputFileForm")[0]);
$.ajax({
type:'post',
url:webRoot+"/electronicContractUrl/webapp/uploadfile",
data:formData,
async: false,
ca
- mybatis常用jdbcType数据类型
ysj5125094
mybatismapperjdbcType
MyBatis 通过包含的jdbcType
类型
BIT FLOAT CHAR