- Hadoop的基础操作_hadoop常用操作
字节全栈_kYu
hadoopeclipse大数据
####下载文件语法:hadoopfs-gethadoopfs-copyToLocal示例:将user/text.txt文件下载到本地/usr/local/下-copyToLocal:复制到本地[root@master~]#hadoopfs-copyToLocal/user/text.txt/usr/local/[root@master~]#cd/usr/local/[root@masterloc
- kylin套_Apache Kylin(一)Kylin介绍
weixin_39898011
kylin套
1.传统大数据分析的问题在基于Hadoop生态的传统大数据分析中,主要使用的技术是MPP(MassivelyParallelProcessing)大规模并行处理和列式存储。MPP使用线性增加计算资源换取计算时间的线性下降,列式存储可以提高读取数据的速率。两者结合可以使得基于Hadoop的SQL查询速度从小时级降为分钟级。不过分钟级别的查询响应仍未达到交互式分析级别,主要问题在于:MPP以及列式存储
- linux的apache安装,Apache Kylin | 安装指南
姜白的树洞
linux的apache安装
软件要求Hadoop:2.7+,3.1+(sincev2.5)Hive:0.13-1.2.1+HBase:1.1+,2.0(sincev2.5)Spark(可选)2.3.0+Kafka(可选)1.0.0+(sincev2.5)JDK:1.8+(sincev2.5)OS:Linuxonly,CentOS6.5+orUbuntu16.0.4+在HortonworksHDP2.2-2.6and3.0,C
- kylin linux 安装教程,Apache Kylin | 安装指南
社本
kylinlinux安装教程
软件要求Hadoop:2.7+Hive:0.13-1.2.1+HBase:1.1+Spark2.1.1+JDK:1.7+OS:Linuxonly,CentOS6.5+orUbuntu16.0.4+用HortonworksHDP2.2-2.6,ClouderaCDH5.7-5.11,AWSEMR5.7-5.10,AzureHDInsight3.5-3.6进行测试。出于试用和开发的目的,我们建议您使用
- Hadoop---(6)Sqoop(数据传输)
Mr Cao
sqoop大数据
6.SqoopSqoop是一个用于hadoop数据和结构化数据之间转换的工具。全称SQL-TO-HADOOP.它可以把hadoop数据,包括hive和hbase存储的数据转化为结构化数据也就是数据库的数据,也可以把关系型数据库数据转化为hadoop数据这些转换操作全是通过Hadoop的MapTask来完成的,并不会涉及到Reduce操作。这是因为我们只是进行数据的拷贝,并不会对数据进行处理或者计算
- hbase无法建表:org.apache.hadoop.hbase.PleaseHoldException: Master is initializing
magicchu
CDHHBASE大数据
1.环境:cdh6.2.12.现象:hbaseshell进去后,list命令执行正常,执行建表语句后报错:ERROR:org.apache.hadoop.hbase.PleaseHoldException:Masterisinitializing提示master正在初始化中,查看master日志:WARNorg.apache.hadoop.hbase.master.HMaster:hbase:na
- Hive 整合 Spark 全教程 (Hive on Spark)
字节全栈_rJF
hivesparkhadoop
hadoop.proxyuser.luanhao.groups*hadoop.proxyuser.luanhao.groups*2)HDFS配置文件配置hdfs-site.xmldfs.namenode.http-addressBigdata00:9870dfs.namenode.secondary.http-addressBigdata00:9868dfs.replication13)YARN配
- spark和python的区别_Spark入门(Python)
weixin_39934257
spark和python的区别
Spark是第一个脱胎于该转变的快速、通用分布式计算范式,并且很快流行起来。Spark使用函数式编程范式扩展了MapReduce模型以支持更多计算类型,可以涵盖广泛的工作流,这些工作流之前被实现为Hadoop之上的特殊系统。Spark使用内存缓存来提升性能,因此进行交互式分析也足够快速(就如同使用Python解释器,与集群进行交互一样)。缓存同时提升了迭代算法的性能,这使得Spark非常适合数据理
- spark python入门_python pyspark入门篇
weixin_39686634
sparkpython入门
一.环境介绍:1.安装jdk7以上2.python2.7.113.IDEpycharm4.package:spark-1.6.0-bin-hadoop2.6.tar.gz二.Setup1.解压spark-1.6.0-bin-hadoop2.6.tar.gz到目录D:\spark-1.6.0-bin-hadoop2.62.配置环境变量Path,添加D:\spark-1.6.0-bin-hadoop2
- 安装HBase-2.4.12 (hadoop3.3.1)
不饿同学
大数据hbasebigdatahadoop
1.下载https://www.apache.org/dyn/closer.lua/hbase/2.4.12/hbase-2.4.12-bin.tar.gz节点角色配置节点MasterZooKeeperRegionServernode001yesyesyesnode002backupyesyesnode003noyesyes2.解压下载的文件,并切换到新创建的目录。(base)[root@node
- Hadoop--HA架构详解
娘子,出来看上帝
HadoopHadoop大数据HA
一、HA架构工作背景HDFS集群中的nameNode存在单点故障因素。对于只有一个nameNode工作的集群来说,一旦nameNode出现意外情况,会导致整个集群无法工作,直到nameNode重新启动。为了解决上述问题,Hadoop给出了高容错,高可用的HA方案:一个HDFS集群至少存在两个nameNode,一个nameNode处在active(主)状态,其他nameNode处在standby(备
- Hadoop HA 架构
weixin_30569033
shell大数据
为什么要用集群?企业里面,多台机器伪分布式每一个角色都是一个进程HDFS:NNSNNDNYARN:RMNM大数据所有组件,都是主从架构master-slaveHDFS读写请求都是先到NN节点,但是,HBase读写请求不是经过master,建表和删除表是需要经过masterNN节点挂了,就不能提供对外服务(-put,-get)需要配置两个NN节点(实时的,任何时刻只有一台active对外,另外一台是
- 【hadoop学习之路】Hive HQL 语句实现查询
新世纪debug战士
hadoop学习之路hive
目录表数据表1students_data.txt表2course.txt实验步骤结论表数据表1students_data.txt21434,Sara,F,21,20,73,classC41443,Mary,M,19,30,90,classA43333,Dery,F,20,40,85,classB45454,Mary,F,22,10,91,classA14634,Henry,M,18,50,56,c
- HDFS总结
ChenJieYaYa
Hadoophdfshadoopbigdata
基于前面的学习与配置,相信对于HDFS有了一定的了解HDFS概述1.什么是HDFSHadoopDistributedFileSystem:分步式文件系统HDFS是Hadoop体系中数据存储管理的基础HDFS是基于流数据模式访问和处理超大文件的需求而开发的1.流式数据:将数据序列化为字节流来存储,这样不会破坏文件的结构和内容,而且字节流直接存储在磁盘上,可以分片或分块2.当超大规模的文件本身就已经超
- 11 Spark面试真题
TTXS123456789ABC
#Sparkspark面试大数据
11Spark大厂面试真题1.通常来说,Spark与MapReduce相比,Spark运行效率更高。请说明效率更高来源于Spark内置的哪些机制?2.hadoop和spark使用场景?3.spark如何保证宕机迅速恢复?4.hadoop和spark的相同点和不同点?5.RDD持久化原理?6.checkpoint检查点机制?7.checkpoint和持久化机制的区别?8.RDD机制理解吗?9.Spa
- 【详细讲解】hive优化
songqq27
大数据hive
1、开启本地模式大多数的HadoopJob是需要Hadoop提供的完整的可扩展性来处理大数据集的。不过,有时Hive的输入数据量是非常小的。在这种情况下,为查询触发执行任务消耗的时间可能会比实际job的执行时间要多的多。对于大多数这种情况,Hive可以通过本地模式在单台机器上处理所有的任务。对于小数据集,执行时间可以明显被缩短。用户可以通过设置hive.exec.mode.local.auto的值
- 大数据毕业设计hadoop+spark+hive豆瓣图书数据分析可视化大屏 豆瓣图书爬虫 图书推荐系统
qq_79856539
javawebjava大数据hadoop课程设计
系统总体目标基于Spark的个性化书籍推荐系统是一种基于大数据技术的智能推荐系统,它可以根据用户的历史行为和偏好,为用户提供个性化的书籍推荐。该系统采用Spark技术,可以实现大数据的实时处理,从而提高推荐系统的准确性和可靠性。此外,该系统还可以根据用户的习惯和偏好,提供更加个性化的书籍推荐,从而满足用户的需求。系统的使用者包含普通用户和管理员两类,普通用户是系统的主要服务对象,主流人群是经常查看
- python 分布式集群_Python搭建Spark分布式集群环境
小国阁下
python分布式集群
前言ApacheSpark是一个新兴的大数据处理通用引擎,提供了分布式的内存抽象。Spark最大的特点就是快,可比HadoopMapReduce的处理速度快100倍。本文没有使用一台电脑上构建多个虚拟机的方法来模拟集群,而是使用三台电脑来搭建一个小型分布式集群环境安装。本教程采用Spark2.0以上版本(比如Spark2.0.2、Spark2.1.0等)搭建集群,同样适用于搭建Spark1.6.2
- Hadoop错误: put: Lease mismatch on ... by DFSClient_NONMAPREDUCE_-499992815_1.... 学习总结
星月情缘02
ETL技术Hadoophdfs租约hadoop错误
错误总结分享:使用了hadoop挺长时间了,多数人应该很熟悉它的特点了吧,但是今天突然遇到个错误,从来没见过,一时自己也想不到是什么原因,就在网上查了一些资料,得到了解决的办法,再次分享一下。过程:使用kettle数据清洗工具在进行同步任务的过程中,最后数据是被加载到hdfs的,这里用shell脚本实现,hdfsdfs-put-r/hdfs的目录。结果程序执行到这一步的时候报错了。错误描述就是文章
- Hadoop3.3.4伪分布式环境搭建
凡许真
分布式hadoop伪分布式hadoop3.3.4
文章目录前言一、准备1.下载Hadoop2.配置环境变量3.配置免密二、Hadoop配置1.hadoop-env.sh2.hdfs-site.xml3.core-site.xml4.mapred-site.xml5.yarn-site.xml三、格式化四、启动五、访问web页面前言hadoop学习——伪分布式环境——普通用户搭建一、准备1.下载Hadoop2.配置环境变量vi~/.bash_pro
- Hadoop HA 格式化NameNode 顺序
凡许真
hadoop大数据分布式HA
文章目录前言一、启动JournalNode二、格式化NameNode1.执行格式化命令2.启动namenode3.执行格式化命令4.启动namenode其他前言记录搭建HadoopHA架构时格式化namenode问题一、启动JournalNode分别启动JournalNode,命令如下hadoop-daemon.shstartjournalnode二、格式化NameNode1.执行格式化命令找其中
- Hive存储系统全面测试报告
蚂蚁质量
软件测试测试用例功能测试
引言在大数据时代,数据存储和处理技术的重要性日益凸显。ApacheHive作为一个基于Hadoop的数据仓库工具,因其能够提供类SQL查询功能(HiveQL)而广受欢迎。Hive的设计初衷是为了简化大数据集的查询和管理,它允许用户通过简单的SQL语句来操作存储在Hadoop分布式文件系统(HDFS)上的大规模数据集。然而,随着数据量的激增和业务需求的多样化,Hive存储系统的功能、性能和安全性面临
- window10下编译hadoop报错:Failed to execute goal org.apache.maven.plugins:maven-antrun-plugin:1.7:
huangxgc
hadoophadoopwindows
Windows10下buildhadoop2.7.3报错:Failedtoexecutegoalorg.apache.maven.plugins:maven-antrun-plugin:1.7:[ERROR]Failedtoexecutegoalorg.apache.maven.plugins:maven-antrun-plugin:1.7:run(dist)onprojecthadoop-hdf
- 图文详解 MapReduce on YARN
Shockang
大数据技术体系大数据mapreduceyarn
前言本文隶属于专栏《1000个问题搞定大数据技术体系》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见1000个问题搞定大数据技术体系正文权威版本——《Hadoop权威指南第3版》1.作业提交MRrunJob从RM获取新的作业ID作业客户端检査作业的输出说明,计算输入分片并将作业资源(包括作业JAR、配置和分片信息)复制到HDFS。通过调用R
- 深入MapReduce——从MRv1到Yarn
黄雪超
大数据基础#深入MapReducemapreduce大数据hadoop
引入我们前面篇章有提到,和MapReduce的论文不太一样。在Hadoop1.0实现里,每一个MapReduce的任务并没有一个独立的master进程,而是直接让调度系统承担了所有的worker的master的角色,这就是Hadoop1.0里的JobTracker。在Hadoop1.0里,MapReduce论文里面的worker就是TaskTracker,用来执行map和reduce的任务。而分配
- Hadoop学习笔记 --- YARN执行流程与工作原理
杨鑫newlfe
数据仓库大数据挖掘与大数据应用案例YARNHadoop大数据资源调度数据仓库
一、YARN简述首先介绍一下YARN在Hadoop2.0版本引进的资源管理系统,直接从MapReduceV1演化而来(由于引擎的功能缺陷);原因是将MapReduce1中的JobTracker的资源管理和作业调度两个功能分开,分别由ResourceManager和ApplicationMaster进行实现;ResourceManager:负责整个集群的资源管理和调度ApplicationMaste
- 【深入浅出 Yarn 架构与实现】1-1 设计理念与基本架构
大数据王小皮
深入浅出Yarn架构与实现架构hadoop大数据yarnjava
一、Yarn产生的背景Hadoop2之前是由HDFS和MR组成的,HDFS负责存储,MR负责计算。一)MRv1的问题耦合度高:MR中的jobTracker同时负责资源管理和作业控制两个功能,互相制约。可靠性差:管理节点是单机的,有单点故障的问题。资源利用率低:基于slot的资源分配模型。机器会将资源划分成若干相同大小的slot,并划定哪些是mapslot、哪些是reduceslot。无法支持多种计
- 【YARN】yarn 基础知识整理——hadoop1.0与hadoop2.0区别、yarn总结
时间的美景
HadoopYarnhadoophadoop1hadoop2大数据
文章目录1.hadoop1.0和hadoop2.0区别1.1hadoop1.01.1.1HDFS1.1.2Mapreduce1.2hadoop2.01.2.1HDFS1.2.2Yarn/MapReduce22.Yarn2.1Yarn(YetAnotherResourceNegotiator)概述2.2Yarn的优点2.3Yarn重要概念2.3.1ResourceManager2.3.2NodeMa
- 搭建Hadoop与Hive环境
达达玲玲
hadoophive大数据
当搭建Hadoop与Hive环境时,以下是每个步骤的详细操作说明:1.安装并配置CentOS7操作系统:-下载CentOS7ISO镜像文件,并通过虚拟机或物理机安装CentOS7操作系统。-在安装过程中,为系统分配必要的网络、用户和权限。2.安装Java开发环境:-下载适合您的系统的JavaJDK版本。-使用命令或GUI工具安装JavaJDK。-配置JAVA_HOME环境变量:-打开终端,输入以下
- 大数据技术之MapReduce
wespten
HadoopHiveSpark大数据安全大数据mapreducehadoop
一、MapReduce概述1、MapReduce简介MapReduce是一个分布式运算程序的编程框架,是基于Hadoop的数据分析计算的核心框架。MapReduce处理过程分为两个阶段:Map和Reduce。Map负责把一个任务分解成多个任务,Reduce负责把分解后多任务处理的结果汇总。2、MapReduce优缺点MapReduce优点:MapReduce易于编程:它简单的实现一些接口,就可以完
- SAX解析xml文件
小猪猪08
xml
1.创建SAXParserFactory实例
2.通过SAXParserFactory对象获取SAXParser实例
3.创建一个类SAXParserHander继续DefaultHandler,并且实例化这个类
4.SAXParser实例的parse来获取文件
public static void main(String[] args) {
//
- 为什么mysql里的ibdata1文件不断的增长?
brotherlamp
linuxlinux运维linux资料linux视频linux运维自学
我们在 Percona 支持栏目经常收到关于 MySQL 的 ibdata1 文件的这个问题。
当监控服务器发送一个关于 MySQL 服务器存储的报警时,恐慌就开始了 —— 就是说磁盘快要满了。
一番调查后你意识到大多数地盘空间被 InnoDB 的共享表空间 ibdata1 使用。而你已经启用了 innodbfileper_table,所以问题是:
ibdata1存了什么?
当你启用了 i
- Quartz-quartz.properties配置
eksliang
quartz
其实Quartz JAR文件的org.quartz包下就包含了一个quartz.properties属性配置文件并提供了默认设置。如果需要调整默认配置,可以在类路径下建立一个新的quartz.properties,它将自动被Quartz加载并覆盖默认的设置。
下面是这些默认值的解释
#-----集群的配置
org.quartz.scheduler.instanceName =
- informatica session的使用
18289753290
workflowsessionlogInformatica
如果希望workflow存储最近20次的log,在session里的Config Object设置,log options做配置,save session log :sessions run ;savesessio log for these runs:20
session下面的source 里面有个tracing 
- Scrapy抓取网页时出现CRC check failed 0x471e6e9a != 0x7c07b839L的错误
酷的飞上天空
scrapy
Scrapy版本0.14.4
出现问题现象:
ERROR: Error downloading <GET http://xxxxx CRC check failed
解决方法
1.设置网络请求时的header中的属性'Accept-Encoding': '*;q=0'
明确表示不支持任何形式的压缩格式,避免程序的解压
- java Swing小集锦
永夜-极光
java swing
1.关闭窗体弹出确认对话框
1.1 this.setDefaultCloseOperation (JFrame.DO_NOTHING_ON_CLOSE);
1.2
this.addWindowListener (
new WindowAdapter () {
public void windo
- 强制删除.svn文件夹
随便小屋
java
在windows上,从别处复制的项目中可能带有.svn文件夹,手动删除太麻烦,并且每个文件夹下都有。所以写了个程序进行删除。因为.svn文件夹在windows上是只读的,所以用File中的delete()和deleteOnExist()方法都不能将其删除,所以只能采用windows命令方式进行删除
- GET和POST有什么区别?及为什么网上的多数答案都是错的。
aijuans
get post
如果有人问你,GET和POST,有什么区别?你会如何回答? 我的经历
前几天有人问我这个问题。我说GET是用于获取数据的,POST,一般用于将数据发给服务器之用。
这个答案好像并不是他想要的。于是他继续追问有没有别的区别?我说这就是个名字而已,如果服务器支持,他完全可以把G
- 谈谈新浪微博背后的那些算法
aoyouzi
谈谈新浪微博背后的那些算法
本文对微博中常见的问题的对应算法进行了简单的介绍,在实际应用中的算法比介绍的要复杂的多。当然,本文覆盖的主题并不全,比如好友推荐、热点跟踪等就没有涉及到。但古人云“窥一斑而见全豹”,希望本文的介绍能帮助大家更好的理解微博这样的社交网络应用。
微博是一个很多人都在用的社交应用。天天刷微博的人每天都会进行着这样几个操作:原创、转发、回复、阅读、关注、@等。其中,前四个是针对短博文,最后的关注和@则针
- Connection reset 连接被重置的解决方法
百合不是茶
java字符流连接被重置
流是java的核心部分,,昨天在做android服务器连接服务器的时候出了问题,就将代码放到java中执行,结果还是一样连接被重置
被重置的代码如下;
客户端代码;
package 通信软件服务器;
import java.io.BufferedWriter;
import java.io.OutputStream;
import java.io.O
- web.xml配置详解之filter
bijian1013
javaweb.xmlfilter
一.定义
<filter>
<filter-name>encodingfilter</filter-name>
<filter-class>com.my.app.EncodingFilter</filter-class>
<init-param>
<param-name>encoding<
- Heritrix
Bill_chen
多线程xml算法制造配置管理
作为纯Java语言开发的、功能强大的网络爬虫Heritrix,其功能极其强大,且扩展性良好,深受热爱搜索技术的盆友们的喜爱,但它配置较为复杂,且源码不好理解,最近又使劲看了下,结合自己的学习和理解,跟大家分享Heritrix的点点滴滴。
Heritrix的下载(http://sourceforge.net/projects/archive-crawler/)安装、配置,就不罗嗦了,可以自己找找资
- 【Zookeeper】FAQ
bit1129
zookeeper
1.脱离IDE,运行简单的Java客户端程序
#ZkClient是简单的Zookeeper~$ java -cp "./:zookeeper-3.4.6.jar:./lib/*" ZKClient
1. Zookeeper是的Watcher回调是同步操作,需要添加异步处理的代码
2. 如果Zookeeper集群跨越多个机房,那么Leader/
- The user specified as a definer ('aaa'@'localhost') does not exist
白糖_
localhost
今天遇到一个客户BUG,当前的jdbc连接用户是root,然后部分删除操作都会报下面这个错误:The user specified as a definer ('aaa'@'localhost') does not exist
最后找原因发现删除操作做了触发器,而触发器里面有这样一句
/*!50017 DEFINER = ''aaa@'localhost' */
原来最初
- javascript中showModelDialog刷新父页面
bozch
JavaScript刷新父页面showModalDialog
在页面中使用showModalDialog打开模式子页面窗口的时候,如果想在子页面中操作父页面中的某个节点,可以通过如下的进行:
window.showModalDialog('url',self,‘status...’); // 首先中间参数使用self
在子页面使用w
- 编程之美-买书折扣
bylijinnan
编程之美
import java.util.Arrays;
public class BookDiscount {
/**编程之美 买书折扣
书上的贪心算法的分析很有意思,我看了半天看不懂,结果作者说,贪心算法在这个问题上是不适用的。。
下面用动态规划实现。
哈利波特这本书一共有五卷,每卷都是8欧元,如果读者一次购买不同的两卷可扣除5%的折扣,三卷10%,四卷20%,五卷
- 关于struts2.3.4项目跨站执行脚本以及远程执行漏洞修复概要
chenbowen00
strutsWEB安全
因为近期负责的几个银行系统软件,需要交付客户,因此客户专门请了安全公司对系统进行了安全评测,结果发现了诸如跨站执行脚本,远程执行漏洞以及弱口令等问题。
下面记录下本次解决的过程以便后续
1、首先从最简单的开始处理,服务器的弱口令问题,首先根据安全工具提供的测试描述中发现应用服务器中存在一个匿名用户,默认是不需要密码的,经过分析发现服务器使用了FTP协议,
而使用ftp协议默认会产生一个匿名用
- [电力与暖气]煤炭燃烧与电力加温
comsci
在宇宙中,用贝塔射线观测地球某个部分,看上去,好像一个个马蜂窝,又像珊瑚礁一样,原来是某个国家的采煤区.....
不过,这个采煤区的煤炭看来是要用完了.....那么依赖将起燃烧并取暖的城市,在极度严寒的季节中...该怎么办呢?
&nbs
- oracle O7_DICTIONARY_ACCESSIBILITY参数
daizj
oracle
O7_DICTIONARY_ACCESSIBILITY参数控制对数据字典的访问.设置为true,如果用户被授予了如select any table等any table权限,用户即使不是dba或sysdba用户也可以访问数据字典.在9i及以上版本默认为false,8i及以前版本默认为true.如果设置为true就可能会带来安全上的一些问题.这也就为什么O7_DICTIONARY_ACCESSIBIL
- 比较全面的MySQL优化参考
dengkane
mysql
本文整理了一些MySQL的通用优化方法,做个简单的总结分享,旨在帮助那些没有专职MySQL DBA的企业做好基本的优化工作,至于具体的SQL优化,大部分通过加适当的索引即可达到效果,更复杂的就需要具体分析了,可以参考本站的一些优化案例或者联系我,下方有我的联系方式。这是上篇。
1、硬件层相关优化
1.1、CPU相关
在服务器的BIOS设置中,可
- C语言homework2,有一个逆序打印数字的小算法
dcj3sjt126com
c
#h1#
0、完成课堂例子
1、将一个四位数逆序打印
1234 ==> 4321
实现方法一:
# include <stdio.h>
int main(void)
{
int i = 1234;
int one = i%10;
int two = i / 10 % 10;
int three = i / 100 % 10;
- apacheBench对网站进行压力测试
dcj3sjt126com
apachebench
ab 的全称是 ApacheBench , 是 Apache 附带的一个小工具 , 专门用于 HTTP Server 的 benchmark testing , 可以同时模拟多个并发请求。前段时间看到公司的开发人员也在用它作一些测试,看起来也不错,很简单,也很容易使用,所以今天花一点时间看了一下。
通过下面的一个简单的例子和注释,相信大家可以更容易理解这个工具的使用。
- 2种办法让HashMap线程安全
flyfoxs
javajdkjni
多线程之--2种办法让HashMap线程安全
多线程之--synchronized 和reentrantlock的优缺点
多线程之--2种JAVA乐观锁的比较( NonfairSync VS. FairSync)
HashMap不是线程安全的,往往在写程序时需要通过一些方法来回避.其实JDK原生的提供了2种方法让HashMap支持线程安全.
- Spring Security(04)——认证简介
234390216
Spring Security认证过程
认证简介
目录
1.1 认证过程
1.2 Web应用的认证过程
1.2.1 ExceptionTranslationFilter
1.2.2 在request之间共享SecurityContext
1
- Java 位运算
Javahuhui
java位运算
// 左移( << ) 低位补0
// 0000 0000 0000 0000 0000 0000 0000 0110 然后左移2位后,低位补0:
// 0000 0000 0000 0000 0000 0000 0001 1000
System.out.println(6 << 2);// 运行结果是24
// 右移( >> ) 高位补"
- mysql免安装版配置
ldzyz007
mysql
1、my-small.ini是为了小型数据库而设计的。不应该把这个模型用于含有一些常用项目的数据库。
2、my-medium.ini是为中等规模的数据库而设计的。如果你正在企业中使用RHEL,可能会比这个操作系统的最小RAM需求(256MB)明显多得多的物理内存。由此可见,如果有那么多RAM内存可以使用,自然可以在同一台机器上运行其它服务。
3、my-large.ini是为专用于一个SQL数据
- MFC和ado数据库使用时遇到的问题
你不认识的休道人
sqlC++mfc
===================================================================
第一个
===================================================================
try{
CString sql;
sql.Format("select * from p
- 表单重复提交Double Submits
rensanning
double
可能发生的场景:
*多次点击提交按钮
*刷新页面
*点击浏览器回退按钮
*直接访问收藏夹中的地址
*重复发送HTTP请求(Ajax)
(1)点击按钮后disable该按钮一会儿,这样能避免急躁的用户频繁点击按钮。
这种方法确实有些粗暴,友好一点的可以把按钮的文字变一下做个提示,比如Bootstrap的做法:
http://getbootstrap.co
- Java String 十大常见问题
tomcat_oracle
java正则表达式
1.字符串比较,使用“==”还是equals()? "=="判断两个引用的是不是同一个内存地址(同一个物理对象)。 equals()判断两个字符串的值是否相等。 除非你想判断两个string引用是否同一个对象,否则应该总是使用equals()方法。 如果你了解字符串的驻留(String Interning)则会更好地理解这个问题。
- SpringMVC 登陆拦截器实现登陆控制
xp9802
springMVC
思路,先登陆后,将登陆信息存储在session中,然后通过拦截器,对系统中的页面和资源进行访问拦截,同时对于登陆本身相关的页面和资源不拦截。
实现方法:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23