论文辅助笔记:t2vec models.py

1 EncoderDecoder

1.1 _init_

class EncoderDecoder(nn.Module):
    def __init__(self, vocab_size, embedding_size,
                       hidden_size, num_layers, dropout, bidirectional):
        super(EncoderDecoder, self).__init__()
        self.vocab_size = vocab_size #词汇表大小
        self.embedding_size = embedding_size #词向量嵌入的维度大小
        
        ## the embedding shared by encoder and decoder
        self.embedding = nn.Embedding(vocab_size, embedding_size,
                                      padding_idx=constants.PAD)
        #词向量嵌入层
        
        self.encoder = Encoder(embedding_size, hidden_size, num_layers,
                               dropout, bidirectional, self.embedding)
        #编码器

        self.decoder = Decoder(embedding_size, hidden_size, num_layers,
                               dropout, self.embedding)
        #解码器

        self.num_layers = num_layers

1.2 load_pretrained_embedding

从指定的路径加载预训练的词嵌入权重,并将这些权重复制到模型中的 embedding

def load_pretrained_embedding(path):
        if os.path.isfile(path):
            w = torch.load(path)
            #加载预训练的嵌入权重到变量 w

            self.embedding.weight.data.copy_(w)
            #将加载的权重 w 复制到模型的嵌入层

1.3 encoder_hn2decoder_h0

'''
转换编码器的输出隐藏状态
'''
def encoder_hn2decoder_h0(self, h):
        """
        Input:编码器的输出隐藏状态
        h (num_layers * num_directions, batch, hidden_size): encoder output hn
        ---
        Output: 解码器的初始隐藏状态
        h (num_layers, batch, hidden_size * num_directions): decoder input h0
        """

        if self.encoder.num_directions == 2:
            num_layers, batch, hidden_size = h.size(0)//2, h.size(1), h.size(2)
            #根据输入 h 的形状计算 num_layers, batch 和 hidden_size

            return h.view(num_layers, 2, batch, hidden_size)\
                    .transpose(1, 2).contiguous()\
                    .view(num_layers, batch, hidden_size * 2)
            '''
            使用 view 方法将 h 重塑为形状 (num_layers, 2, batch, hidden_size)。
            这里的 2 对应于双向RNN的两个方向

            使用 transpose 交换第2和第3维
            
            使用 contiguous 确保张量在内存中是连续的

            使用 view 方法再次重塑张量,将两个方向的隐藏状态连接在一起,形成形状 (num_layers, batch, hidden_size * 2) 的张量
            '''
        else:
            return h

pytorch笔记:contiguous &tensor 存储知识_pytorch中的tensor存储是列主布局还是行主布局_UQI-LIUWJ的博客-CSDN博客 

1.4 forward

def forward(self, src, lengths, trg):
        """
        Input:
        src (src_seq_len, batch): source tensor 源序列
        lengths (1, batch): source sequence lengths 源序列的长度
        trg (trg_seq_len, batch): target tensor, the `seq_len` in trg is not
            necessarily the same as that in src 目标序列
        需要注意的是,目标序列的长度并不一定与源序列的长度相同
        ---
        Output:
        output (trg_seq_len, batch, hidden_size)
        """

        encoder_hn, H = self.encoder(src, lengths)
        #将源序列src和其长度lengths传递给编码器

        decoder_h0 = self.encoder_hn2decoder_h0(encoder_hn)
        #将编码器的输出隐藏状态encoder_hn转换为适合解码器的初始隐藏状态decoder_h0。

        ## for target we feed the range [BOS:EOS-1] into decoder
        output, decoder_hn = self.decoder(trg[:-1], decoder_h0, H)
        return output

2 Encoder

2.1 init


class Encoder(nn.Module):
    def __init__(self, input_size, hidden_size, num_layers, dropout,
                       bidirectional, embedding):
        """
        embedding (vocab_size, input_size): pretrained embedding
        """
        super(Encoder, self).__init__()
        self.num_directions = 2 if bidirectional else 1
        #根据 bidirectional 参数决定方向数量

        assert hidden_size % self.num_directions == 0
        self.hidden_size = hidden_size // self.num_directions
        self.num_layers = num_layers

        self.embedding = embedding
        self.rnn = nn.GRU(input_size, self.hidden_size,
                          num_layers=num_layers,
                          bidirectional=bidirectional,
                          dropout=dropout)

2.2 forward

'''
数据在编码器中的传播方式,并且考虑了序列的真实长度以处理填充
'''
def forward(self, input, lengths, h0=None):
        """
        Input:
        input (seq_len, batch): padded sequence tensor
        lengths (1, batch): sequence lengths
        h0 (num_layers*num_directions, batch, hidden_size): initial hidden state
        ---
        Output:
        hn (num_layers*num_directions, batch, hidden_size):
            the hidden state of each layer
        output (seq_len, batch, hidden_size*num_directions): output tensor
        """
        # (seq_len, batch) => (seq_len, batch, input_size)

        embed = self.embedding(input)
        #将输入序列索引转换为嵌入表示
        #input(seq_len,batch)->embed(seq_len,batch,self.embedding_size)

        lengths = lengths.data.view(-1).tolist()
        if lengths is not None:
            embed = pack_padded_sequence(embed, lengths)
        #使用pack_padded_sequence对填充的序列进行打包,以便RNN可以跳过填充项

        output, hn = self.rnn(embed, h0)
        #将嵌入的序列传递给GRU RNN
      

        if lengths is not None:
            output = pad_packed_sequence(output)[0]
        #使用pad_packed_sequence对输出序列进行解包,得到RNN的完整输出

        return hn, output

pytorch 笔记:PAD_PACKED_SEQUENCE 和PACK_PADDED_SEQUENCE-CSDN博客

pytorch笔记:PackedSequence对象送入RNN-CSDN博客

3  Decoder

3.1 init

def __init__(self, input_size, hidden_size, num_layers, dropout, embedding):
        super(Decoder, self).__init__()
        self.embedding = embedding
        self.rnn = StackingGRUCell(input_size, hidden_size, num_layers,
                                   dropout)
        self.attention = GlobalAttention(hidden_size)
        self.dropout = nn.Dropout(dropout)
        self.num_layers = num_layers

 3.2 forward

'''
seq2seq的解码过程,使用了可选的注意力机制
'''
def forward(self, input, h, H, use_attention=True):
        """
        Input:
        input (seq_len, batch): padded sequence tensor
        h (num_layers, batch, hidden_size): input hidden state
        H (seq_len, batch, hidden_size): the context used in attention mechanism
            which is the output of encoder
        use_attention: If True then we use attention
        ---
        Output:
        output (seq_len, batch, hidden_size)
        h (num_layers, batch, hidden_size): output hidden state,
            h may serve as input hidden state for the next iteration,
            especially when we feed the word one by one (i.e., seq_len=1)
            such as in translation
        """

        assert input.dim() == 2, "The input should be of (seq_len, batch)"


        # (seq_len, batch) => (seq_len, batch, input_size)
        embed = self.embedding(input)
        #将输入序列转换为嵌入向量

        output = []
        # split along the sequence length dimension
        for e in embed.split(1):
            #split(1)每次沿着seq_len方法分割一行
            #即每个e的维度是(1,batch,input_size)

            e = e.squeeze(0) # (1, batch, input_size) => (batch, input_size)

            o, h = self.rnn(e, h)
            #用RNN处理嵌入向量,并得到输出o和新的隐藏状态h
            #这边的RNN是StackingGRUCell,也即我认为可能是seq_len为1的GRU
            #o:(batch, hidden_size)
            #h:(num_layers,batch, hidden_size)

            if use_attention:
                o = self.attention(o, H.transpose(0, 1))
                #如果use_attention为True,将使用注意力机制处理RNN的输出

            o = self.dropout(o)
            #为了正则化和防止过拟合,应用 dropout

            output.append(o)
           
        output = torch.stack(output)
        #将所有的输出叠加为一个张量
        return output, h
        #(seq_len, batch, hidden_size)

4 StackingGRUCell

个人感觉就是

class StackingGRUCell(nn.Module):
    """
    Multi-layer CRU Cell
    """
    def __init__(self, input_size, hidden_size, num_layers, dropout):
        super(StackingGRUCell, self).__init__()
        self.num_layers = num_layers
        self.grus = nn.ModuleList()
        self.dropout = nn.Dropout(dropout)

        self.grus.append(nn.GRUCell(input_size, hidden_size))
        for i in range(1, num_layers):
            self.grus.append(nn.GRUCell(hidden_size, hidden_size))


    def forward(self, input, h0):
        """
        Input:
        input (batch, input_size): input tensor
        h0 (num_layers, batch, hidden_size): initial hidden state
        ---
        Output:
        output (batch, hidden_size): the final layer output tensor
        hn (num_layers, batch, hidden_size): the hidden state of each layer
        """
        hn = []
        output = input
        for i, gru in enumerate(self.grus):
            hn_i = gru(output, h0[i])
            #在每一次循环中,输入output会经过一个GRU单元并更新隐藏状态

            hn.append(hn_i)
            if i != self.num_layers - 1:
                output = self.dropout(hn_i)
            else:
                output = hn_i
            #如果不是最后一层,输出会经过一个dropout层。

        hn = torch.stack(hn)
        #将hn列表转变为一个张量
        return output, hn

5 GlobalAttention

'''
对于给定的查询向量q,查找上下文矩阵H中哪些向量与其最相关,并使用这些相关性的加权和来生成一个新的上下文向量
'''
class GlobalAttention(nn.Module):
    """
    $$a = \sigma((W_1 q)H)$$
    $$c = \tanh(W_2 [a H, q])$$
    """
    def __init__(self, hidden_size):
        super(GlobalAttention, self).__init__()
        self.L1 = nn.Linear(hidden_size, hidden_size, bias=False)
        self.L2 = nn.Linear(2*hidden_size, hidden_size, bias=False)
        self.softmax = nn.Softmax(dim=1)
        self.tanh = nn.Tanh()

    def forward(self, q, H):
        """
        Input:
        q (batch, hidden_size): query
        H (batch, seq_len, hidden_size): context
        ---
        Output:
        c (batch, hidden_size)
        """
        # (batch, hidden_size) => (batch, hidden_size, 1)
        q1 = self.L1(q).unsqueeze(2)
        #使用线性变换L1对查询向量q进行变换,然后增加一个维度以进行后续的批量矩阵乘法

        # (batch, seq_len)
        a = torch.bmm(H, q1).squeeze(2)
        #计算查询向量与上下文矩阵H中的每一个向量的点积。
        #这将生成一个形状为(batch, seq_len)的张量,表示查询向量与每个上下文向量的相似度

        a = self.softmax(a)
        #经过softmax,得到注意力权重

        # (batch, seq_len) => (batch, 1, seq_len)
        a = a.unsqueeze(1)
        #增加一个维度以进行后续的批量矩阵乘法

        # (batch, hidden_size)
        c = torch.bmm(a, H).squeeze(1)
        #使用注意力权重与上下文矩阵H进行加权求和,得到上下文向量c

        # (batch, hidden_size * 2)
        c = torch.cat([c, q], 1)
        #将上下文向量与查询向量连接在一起

        return self.tanh(self.L2(c))
        #使用线性变换L2对连接后的向量进行变换,并使用tanh激活函数

你可能感兴趣的:(论文笔记,pytorch学习,笔记,python,机器学习)