class EncoderDecoder(nn.Module):
def __init__(self, vocab_size, embedding_size,
hidden_size, num_layers, dropout, bidirectional):
super(EncoderDecoder, self).__init__()
self.vocab_size = vocab_size #词汇表大小
self.embedding_size = embedding_size #词向量嵌入的维度大小
## the embedding shared by encoder and decoder
self.embedding = nn.Embedding(vocab_size, embedding_size,
padding_idx=constants.PAD)
#词向量嵌入层
self.encoder = Encoder(embedding_size, hidden_size, num_layers,
dropout, bidirectional, self.embedding)
#编码器
self.decoder = Decoder(embedding_size, hidden_size, num_layers,
dropout, self.embedding)
#解码器
self.num_layers = num_layers
从指定的路径加载预训练的词嵌入权重,并将这些权重复制到模型中的 embedding
层
def load_pretrained_embedding(path):
if os.path.isfile(path):
w = torch.load(path)
#加载预训练的嵌入权重到变量 w
self.embedding.weight.data.copy_(w)
#将加载的权重 w 复制到模型的嵌入层
'''
转换编码器的输出隐藏状态
'''
def encoder_hn2decoder_h0(self, h):
"""
Input:编码器的输出隐藏状态
h (num_layers * num_directions, batch, hidden_size): encoder output hn
---
Output: 解码器的初始隐藏状态
h (num_layers, batch, hidden_size * num_directions): decoder input h0
"""
if self.encoder.num_directions == 2:
num_layers, batch, hidden_size = h.size(0)//2, h.size(1), h.size(2)
#根据输入 h 的形状计算 num_layers, batch 和 hidden_size
return h.view(num_layers, 2, batch, hidden_size)\
.transpose(1, 2).contiguous()\
.view(num_layers, batch, hidden_size * 2)
'''
使用 view 方法将 h 重塑为形状 (num_layers, 2, batch, hidden_size)。
这里的 2 对应于双向RNN的两个方向
使用 transpose 交换第2和第3维
使用 contiguous 确保张量在内存中是连续的
使用 view 方法再次重塑张量,将两个方向的隐藏状态连接在一起,形成形状 (num_layers, batch, hidden_size * 2) 的张量
'''
else:
return h
pytorch笔记:contiguous &tensor 存储知识_pytorch中的tensor存储是列主布局还是行主布局_UQI-LIUWJ的博客-CSDN博客
def forward(self, src, lengths, trg):
"""
Input:
src (src_seq_len, batch): source tensor 源序列
lengths (1, batch): source sequence lengths 源序列的长度
trg (trg_seq_len, batch): target tensor, the `seq_len` in trg is not
necessarily the same as that in src 目标序列
需要注意的是,目标序列的长度并不一定与源序列的长度相同
---
Output:
output (trg_seq_len, batch, hidden_size)
"""
encoder_hn, H = self.encoder(src, lengths)
#将源序列src和其长度lengths传递给编码器
decoder_h0 = self.encoder_hn2decoder_h0(encoder_hn)
#将编码器的输出隐藏状态encoder_hn转换为适合解码器的初始隐藏状态decoder_h0。
## for target we feed the range [BOS:EOS-1] into decoder
output, decoder_hn = self.decoder(trg[:-1], decoder_h0, H)
return output
class Encoder(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, dropout,
bidirectional, embedding):
"""
embedding (vocab_size, input_size): pretrained embedding
"""
super(Encoder, self).__init__()
self.num_directions = 2 if bidirectional else 1
#根据 bidirectional 参数决定方向数量
assert hidden_size % self.num_directions == 0
self.hidden_size = hidden_size // self.num_directions
self.num_layers = num_layers
self.embedding = embedding
self.rnn = nn.GRU(input_size, self.hidden_size,
num_layers=num_layers,
bidirectional=bidirectional,
dropout=dropout)
'''
数据在编码器中的传播方式,并且考虑了序列的真实长度以处理填充
'''
def forward(self, input, lengths, h0=None):
"""
Input:
input (seq_len, batch): padded sequence tensor
lengths (1, batch): sequence lengths
h0 (num_layers*num_directions, batch, hidden_size): initial hidden state
---
Output:
hn (num_layers*num_directions, batch, hidden_size):
the hidden state of each layer
output (seq_len, batch, hidden_size*num_directions): output tensor
"""
# (seq_len, batch) => (seq_len, batch, input_size)
embed = self.embedding(input)
#将输入序列索引转换为嵌入表示
#input(seq_len,batch)->embed(seq_len,batch,self.embedding_size)
lengths = lengths.data.view(-1).tolist()
if lengths is not None:
embed = pack_padded_sequence(embed, lengths)
#使用pack_padded_sequence对填充的序列进行打包,以便RNN可以跳过填充项
output, hn = self.rnn(embed, h0)
#将嵌入的序列传递给GRU RNN
if lengths is not None:
output = pad_packed_sequence(output)[0]
#使用pad_packed_sequence对输出序列进行解包,得到RNN的完整输出
return hn, output
pytorch 笔记:PAD_PACKED_SEQUENCE 和PACK_PADDED_SEQUENCE-CSDN博客
pytorch笔记:PackedSequence对象送入RNN-CSDN博客
def __init__(self, input_size, hidden_size, num_layers, dropout, embedding):
super(Decoder, self).__init__()
self.embedding = embedding
self.rnn = StackingGRUCell(input_size, hidden_size, num_layers,
dropout)
self.attention = GlobalAttention(hidden_size)
self.dropout = nn.Dropout(dropout)
self.num_layers = num_layers
'''
seq2seq的解码过程,使用了可选的注意力机制
'''
def forward(self, input, h, H, use_attention=True):
"""
Input:
input (seq_len, batch): padded sequence tensor
h (num_layers, batch, hidden_size): input hidden state
H (seq_len, batch, hidden_size): the context used in attention mechanism
which is the output of encoder
use_attention: If True then we use attention
---
Output:
output (seq_len, batch, hidden_size)
h (num_layers, batch, hidden_size): output hidden state,
h may serve as input hidden state for the next iteration,
especially when we feed the word one by one (i.e., seq_len=1)
such as in translation
"""
assert input.dim() == 2, "The input should be of (seq_len, batch)"
# (seq_len, batch) => (seq_len, batch, input_size)
embed = self.embedding(input)
#将输入序列转换为嵌入向量
output = []
# split along the sequence length dimension
for e in embed.split(1):
#split(1)每次沿着seq_len方法分割一行
#即每个e的维度是(1,batch,input_size)
e = e.squeeze(0) # (1, batch, input_size) => (batch, input_size)
o, h = self.rnn(e, h)
#用RNN处理嵌入向量,并得到输出o和新的隐藏状态h
#这边的RNN是StackingGRUCell,也即我认为可能是seq_len为1的GRU
#o:(batch, hidden_size)
#h:(num_layers,batch, hidden_size)
if use_attention:
o = self.attention(o, H.transpose(0, 1))
#如果use_attention为True,将使用注意力机制处理RNN的输出
o = self.dropout(o)
#为了正则化和防止过拟合,应用 dropout
output.append(o)
output = torch.stack(output)
#将所有的输出叠加为一个张量
return output, h
#(seq_len, batch, hidden_size)
个人感觉就是
class StackingGRUCell(nn.Module):
"""
Multi-layer CRU Cell
"""
def __init__(self, input_size, hidden_size, num_layers, dropout):
super(StackingGRUCell, self).__init__()
self.num_layers = num_layers
self.grus = nn.ModuleList()
self.dropout = nn.Dropout(dropout)
self.grus.append(nn.GRUCell(input_size, hidden_size))
for i in range(1, num_layers):
self.grus.append(nn.GRUCell(hidden_size, hidden_size))
def forward(self, input, h0):
"""
Input:
input (batch, input_size): input tensor
h0 (num_layers, batch, hidden_size): initial hidden state
---
Output:
output (batch, hidden_size): the final layer output tensor
hn (num_layers, batch, hidden_size): the hidden state of each layer
"""
hn = []
output = input
for i, gru in enumerate(self.grus):
hn_i = gru(output, h0[i])
#在每一次循环中,输入output会经过一个GRU单元并更新隐藏状态
hn.append(hn_i)
if i != self.num_layers - 1:
output = self.dropout(hn_i)
else:
output = hn_i
#如果不是最后一层,输出会经过一个dropout层。
hn = torch.stack(hn)
#将hn列表转变为一个张量
return output, hn
'''
对于给定的查询向量q,查找上下文矩阵H中哪些向量与其最相关,并使用这些相关性的加权和来生成一个新的上下文向量
'''
class GlobalAttention(nn.Module):
"""
$$a = \sigma((W_1 q)H)$$
$$c = \tanh(W_2 [a H, q])$$
"""
def __init__(self, hidden_size):
super(GlobalAttention, self).__init__()
self.L1 = nn.Linear(hidden_size, hidden_size, bias=False)
self.L2 = nn.Linear(2*hidden_size, hidden_size, bias=False)
self.softmax = nn.Softmax(dim=1)
self.tanh = nn.Tanh()
def forward(self, q, H):
"""
Input:
q (batch, hidden_size): query
H (batch, seq_len, hidden_size): context
---
Output:
c (batch, hidden_size)
"""
# (batch, hidden_size) => (batch, hidden_size, 1)
q1 = self.L1(q).unsqueeze(2)
#使用线性变换L1对查询向量q进行变换,然后增加一个维度以进行后续的批量矩阵乘法
# (batch, seq_len)
a = torch.bmm(H, q1).squeeze(2)
#计算查询向量与上下文矩阵H中的每一个向量的点积。
#这将生成一个形状为(batch, seq_len)的张量,表示查询向量与每个上下文向量的相似度
a = self.softmax(a)
#经过softmax,得到注意力权重
# (batch, seq_len) => (batch, 1, seq_len)
a = a.unsqueeze(1)
#增加一个维度以进行后续的批量矩阵乘法
# (batch, hidden_size)
c = torch.bmm(a, H).squeeze(1)
#使用注意力权重与上下文矩阵H进行加权求和,得到上下文向量c
# (batch, hidden_size * 2)
c = torch.cat([c, q], 1)
#将上下文向量与查询向量连接在一起
return self.tanh(self.L2(c))
#使用线性变换L2对连接后的向量进行变换,并使用tanh激活函数