前言
从可靠性和使用便利性来讲单机RDBMS完胜N多各类数据库,但当数据量到了一定量之后,又不得不寻求分布式,列存储等等解决方案。citus是基于PostgreSQL的分布式实时分析解决方案,由于其只是作为PostgreSQL的扩展插件而没有动PG内核,所有随快速随PG主版本升级,可靠性也非常值得信任。
citus在支持SQL特性上有一定的限制,比如不支持跨库事务,不支持部分join和子查询的写法等等,做选型时需要留意(大部分的分布式系统对SQL支持或多或少都有些限制,不足为奇,按场景选型即可)。
citus主要适合下面两种场景
多租户
每个租户的数据按租户ID分片,互不干扰,避免跨库操作。
实时数据分析
通过分片将数据打散到各个worker上,查询时由master生成分布式执行计划驱动所有worker并行工作。支持过滤,投影,聚合,join等各类常见算子的下推。
在实时数据分析场景,单位时间的数据增量会很大,本文实测一下citus的数据插入能力(更新,删除的性能类似)。
环境
软硬件配置
CentOS release 6.5 x64物理机(16C/128G/300GB SSD)
CPU: 2*8core 16核32线程, Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz
PostgreSQL 9.6.2
citus 6.1.0
sysbench-1.0.3
机器列表
master
192.168.0.177
worker(8个)
192.168.0.181~192.168.0.188
软件的安装都比较简单,参考官方文档即可,这里略过。
postgresql.conf配置
listen_addresses = '*'
port = 5432
max_connections = 1100
shared_buffers = 32GB
effective_cache_size = 96GB
work_mem = 16MB
maintenance_work_mem = 2GB
min_wal_size = 4GB
max_wal_size = 32GB
checkpoint_completion_target = 0.9
wal_buffers = 16MB
default_statistics_target = 100
shared_preload_libraries = 'citus'
checkpoint_timeout = 60min
wal_level = replica
wal_compression = on
wal_level = replica
wal_log_hints = on
synchronous_commit = off
测试场景
选用sysbench-1.0.3的oltp_insert.lua作为测试用例,执行的SQL的示例如下:
INSERT INTO sbtest1 (id, k, c, pad) VALUES (525449452, 5005, '28491622445-08162085385-16839726209-31171823540-28539137588-93842246002-13643098812-68836434394-95216556185-07917709646', '49165640733-86514010343-02300194630-37380434155-24438915047')
但是,sysbench-1.0.3的oltp_insert.lua中有一个bug,需要先将其改正
i = sysbench.rand.unique()
==>
i = sysbench.rand.unique() - 2147483648
单机测试
建表
CREATE TABLE sbtest1
(
id integer NOT NULL,
k integer NOT NULL DEFAULT 0,
c character(120) NOT NULL DEFAULT ''::bpchar,
pad character(60) NOT NULL DEFAULT ''::bpchar,
PRIMARY KEY (id)
);
CREATE INDEX k_1 ON sbtest1(k);
插入数据
src/sysbench --test=src/lua/oltp_insert.lua \
--db-driver=pgsql \
--pgsql-host=127.0.0.1 \
--pgsql-port=5432 \
--pgsql-user=postgres \
--pgsql-db=dbone \
--auto_inc=0 \
--time=10 \
--threads=128 \
--report-interval=1 \
run
测试结果
TPS为134030
-bash-4.1$ src/sysbench --test=src/lua/oltp_insert.lua --db-driver=pgsql --pgsql-host=127.0.0.1 --pgsql-port=5432 --pgsql-user=postgres --pgsql-db=dbone --auto_inc=0 --time=20 --threads=128 --report-interval=5 run
WARNING: the --test option is deprecated. You can pass a script name or path on the command line without any options.
sysbench 1.0.3 (using bundled LuaJIT 2.1.0-beta2)
Running the test with following options:
Number of threads: 128
Report intermediate results every 5 second(s)
Initializing random number generator from current time
Initializing worker threads...
Threads started!
[ 5s ] thds: 128 tps: 138381.74 qps: 138381.74 (r/w/o: 0.00/138381.74/0.00) lat (ms,95%): 2.07 err/s: 0.00 reconn/s: 0.00
[ 10s ] thds: 128 tps: 134268.30 qps: 134268.30 (r/w/o: 0.00/134268.30/0.00) lat (ms,95%): 2.07 err/s: 0.00 reconn/s: 0.00
[ 15s ] thds: 128 tps: 132830.91 qps: 132831.11 (r/w/o: 0.00/132831.11/0.00) lat (ms,95%): 2.07 err/s: 0.00 reconn/s: 0.00
[ 20s ] thds: 128 tps: 132073.81 qps: 132073.61 (r/w/o: 0.00/132073.61/0.00) lat (ms,95%): 2.03 err/s: 0.00 reconn/s: 0.00
SQL statistics:
queries performed:
read: 0
write: 2688192
other: 0
total: 2688192
transactions: 2688192 (134030.18 per sec.)
queries: 2688192 (134030.18 per sec.)
ignored errors: 0 (0.00 per sec.)
reconnects: 0 (0.00 per sec.)
General statistics:
total time: 20.0547s
total number of events: 2688192
Latency (ms):
min: 0.10
avg: 0.95
max: 88.80
95th percentile: 2.07
sum: 2554006.85
Threads fairness:
events (avg/stddev): 21001.5000/178.10
execution time (avg/stddev): 19.9532/0.01
资源消耗
此时CPU利用率90%,已经接近瓶颈。
-bash-4.1$ iostat sdc -xk 5
...
avg-cpu: %user %nice %system %iowait %steal %idle
69.12 0.00 20.56 0.15 0.00 10.17
Device: rrqm/s wrqm/s r/s w/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util
sdc 0.00 25302.60 18.20 705.20 72.80 104019.20 287.79 5.96 8.21 0.81 58.48
citus集群测试
建表
CREATE TABLE sbtest1
(
id integer NOT NULL,
k integer NOT NULL DEFAULT 0,
c character(120) NOT NULL DEFAULT ''::bpchar,
pad character(60) NOT NULL DEFAULT ''::bpchar,
PRIMARY KEY (id)
);
CREATE INDEX k_1 ON sbtest1(k);
set citus.shard_count = 128;
set citus.shard_replication_factor = 1;
select create_distributed_table('sbtest1','id');
插入数据
/bak/soft/sysbench-1.0.3/src/sysbench --test=/bak/soft/sysbench-1.0.3/src/lua/oltp_insert.lua \
--db-driver=pgsql \
--pgsql-host=127.0.0.1 \
--pgsql-port=5432 \
--pgsql-user=postgres \
--pgsql-db=dbcitus \
--auto_inc=0 \
--time=10 \
--threads=64 \
--report-interval=1 \
run
执行结果
TPS为44637,远低于单机。
-bash-4.1$ /bak/soft/sysbench-1.0.3/src/sysbench --test=/bak/soft/sysbench-1.0.3/src/lua/oltp_insert.lua --db-driver=pgsql --pgsql-host=127.0.0.1 --pgsql-port=5432 --pgsql-user=postgres --pgsql-db=dbcitus --auto_inc=0 --time=20 --threads=64 --report-interval=5 run
WARNING: the --test option is deprecated. You can pass a script name or path on the command line without any options.
sysbench 1.0.3 (using bundled LuaJIT 2.1.0-beta2)
Running the test with following options:
Number of threads: 64
Report intermediate results every 5 second(s)
Initializing random number generator from current time
Initializing worker threads...
Threads started!
[ 5s ] thds: 64 tps: 44628.01 qps: 44628.01 (r/w/o: 0.00/44628.01/0.00) lat (ms,95%): 2.48 err/s: 0.00 reconn/s: 0.00
[ 10s ] thds: 64 tps: 44780.80 qps: 44780.80 (r/w/o: 0.00/44780.80/0.00) lat (ms,95%): 2.48 err/s: 0.00 reconn/s: 0.00
[ 15s ] thds: 64 tps: 44701.32 qps: 44701.72 (r/w/o: 0.00/44701.72/0.00) lat (ms,95%): 2.48 err/s: 0.00 reconn/s: 0.00
[ 20s ] thds: 64 tps: 44801.41 qps: 44801.01 (r/w/o: 0.00/44801.01/0.00) lat (ms,95%): 2.48 err/s: 0.00 reconn/s: 0.00
SQL statistics:
queries performed:
read: 0
write: 894715
other: 0
total: 894715
transactions: 894715 (44637.47 per sec.)
queries: 894715 (44637.47 per sec.)
ignored errors: 0 (0.00 per sec.)
reconnects: 0 (0.00 per sec.)
General statistics:
total time: 20.0421s
total number of events: 894715
Latency (ms):
min: 0.42
avg: 1.43
max: 203.28
95th percentile: 2.48
sum: 1277233.99
Threads fairness:
events (avg/stddev): 13979.9219/71.15
execution time (avg/stddev): 19.9568/0.01
资源消耗
性能瓶颈在master的CPU上,master生成执行计划消耗了大量CPU。
master
master的CPU利用率达到69%
[root@node1 ~]# iostat sdc -xk 5
Linux 2.6.32-431.el6.x86_64 (node1) 2017年03月13日 _x86_64_ (32 CPU)
...
avg-cpu: %user %nice %system %iowait %steal %idle
50.61 0.00 17.80 0.00 0.00 31.59
Device: rrqm/s wrqm/s r/s w/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util
sdc 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
其中一个worker
worker的CPU利用率只有3%,IO也不高。
[root@node5 ~]# iostat sdc -xk 5
Linux 2.6.32-431.el6.x86_64 (node5) 2017年03月13日 _x86_64_ (32 CPU)
...
avg-cpu: %user %nice %system %iowait %steal %idle
2.24 0.00 0.63 0.00 0.00 97.13
Device: rrqm/s wrqm/s r/s w/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util
sdc 0.00 774.00 0.00 265.80 0.00 4159.20 31.30 0.25 0.96 0.01 0.38
优化:masterless部署
既然性能瓶颈在master上,那可以多搞几个master,甚至每个worker都作为master。 这并不困难,只要把master上的元数据拷贝到每个worker上,worker就可以当master用了。
拷贝元数据
在8个worker上分别执行以下SQL:
CREATE TABLE sbtest1
(
id integer NOT NULL,
k integer NOT NULL DEFAULT 0,
c character(120) NOT NULL DEFAULT ''::bpchar,
pad character(60) NOT NULL DEFAULT ''::bpchar,
PRIMARY KEY (id)
);
CREATE INDEX k_1 ON sbtest1(k);
copy pg_dist_node from PROGRAM 'psql "host=192.168.0.177 port=5432 dbname=dbcitus user=postgres" -Atc "copy pg_dist_node to STDOUT"';
copy pg_dist_partition from PROGRAM 'psql "host=192.168.0.177 port=5432 dbname=dbcitus user=postgres" -Atc "copy pg_dist_partition to STDOUT"';
copy pg_dist_shard from PROGRAM 'psql "host=192.168.0.177 port=5432 dbname=dbcitus user=postgres" -Atc "copy pg_dist_shard to STDOUT"';
copy pg_dist_shard_placement from PROGRAM 'psql "host=192.168.0.177 port=5432 dbname=dbcitus user=postgres" -Atc "copy pg_dist_shard_placement to STDOUT"';
copy pg_dist_colocation from PROGRAM 'psql "host=192.168.0.177 port=5432 dbname=dbcitus user=postgres" -Atc "copy pg_dist_colocation to STDOUT"';
修改oltp_insert.lua
分别修改每个worker上的oltp_insert.lua中下面一行,使各个worker上产生的主键不容易冲突
i = sysbench.rand.unique() - 2147483648
worker2
i = sysbench.rand.unique() - 2147483648 + 1
worker3
i = sysbench.rand.unique() - 2147483648 + 2
...
worker8
i = sysbench.rand.unique() - 2147483648 + 7
准备测试脚本
在每个worker上准备测试脚本
/tmp/run_oltp_insert.sh:
#!/bin/bash
cd /bak/soft/sysbench-1.0.3
/bak/soft/sysbench-1.0.3/src/sysbench /bak/soft/sysbench-1.0.3/src/lua/oltp_insert.lua \
--db-driver=pgsql \
--pgsql-host=127.0.0.1 \
--pgsql-port=5432 \
--pgsql-user=postgres \
--pgsql-db=dbcitus \
--auto_inc=0 \
--time=60 \
--threads=64 \
--report-interval=5 \
run >/tmp/run_oltp_insert.log 2>&1
测试
在每个worker上同时执行insert测试
[root@node1 ~]# for i in `seq 1 8` ; do ssh 192.168.0.18$i /tmp/run_oltp_insert.sh >/dev/null 2>&1 & done
[10] 27332
[11] 27333
[12] 27334
[13] 27335
[14] 27336
[15] 27337
[16] 27338
[17] 27339
测试结果
在其中一个worker上的执行结果如下,QPS 2.5w
-bash-4.1$ cat /tmp/run_oltp_insert.log
sysbench 1.0.3 (using bundled LuaJIT 2.1.0-beta2)
Running the test with following options:
Number of threads: 64
Report intermediate results every 5 second(s)
Initializing random number generator from current time
Initializing worker threads...
Threads started!
[ 5s ] thds: 64 tps: 25662.78 qps: 25662.78 (r/w/o: 0.00/25662.78/0.00) lat (ms,95%): 6.67 err/s: 2.60 reconn/s: 0.00
[ 10s ] thds: 64 tps: 26225.38 qps: 26225.38 (r/w/o: 0.00/26225.38/0.00) lat (ms,95%): 6.67 err/s: 7.00 reconn/s: 0.00
[ 15s ] thds: 64 tps: 25996.42 qps: 25996.42 (r/w/o: 0.00/25996.42/0.00) lat (ms,95%): 6.79 err/s: 11.40 reconn/s: 0.00
[ 20s ] thds: 64 tps: 25670.36 qps: 25670.36 (r/w/o: 0.00/25670.36/0.00) lat (ms,95%): 6.79 err/s: 18.60 reconn/s: 0.00
[ 25s ] thds: 64 tps: 25620.89 qps: 25620.89 (r/w/o: 0.00/25620.89/0.00) lat (ms,95%): 6.79 err/s: 22.60 reconn/s: 0.00
[ 30s ] thds: 64 tps: 25357.39 qps: 25357.39 (r/w/o: 0.00/25357.39/0.00) lat (ms,95%): 6.91 err/s: 33.40 reconn/s: 0.00
[ 35s ] thds: 64 tps: 25247.67 qps: 25247.67 (r/w/o: 0.00/25247.67/0.00) lat (ms,95%): 6.91 err/s: 34.60 reconn/s: 0.00
[ 40s ] thds: 64 tps: 25069.27 qps: 25069.27 (r/w/o: 0.00/25069.27/0.00) lat (ms,95%): 6.91 err/s: 41.00 reconn/s: 0.00
[ 45s ] thds: 64 tps: 24796.27 qps: 24796.27 (r/w/o: 0.00/24796.27/0.00) lat (ms,95%): 7.04 err/s: 49.40 reconn/s: 0.00
[ 50s ] thds: 64 tps: 24801.00 qps: 24801.00 (r/w/o: 0.00/24801.00/0.00) lat (ms,95%): 7.04 err/s: 47.40 reconn/s: 0.00
[ 55s ] thds: 64 tps: 24752.83 qps: 24752.83 (r/w/o: 0.00/24752.83/0.00) lat (ms,95%): 7.04 err/s: 57.20 reconn/s: 0.00
[ 60s ] thds: 64 tps: 24533.35 qps: 24533.35 (r/w/o: 0.00/24533.35/0.00) lat (ms,95%): 7.17 err/s: 63.60 reconn/s: 0.00
SQL statistics:
queries performed:
read: 0
write: 1518786
other: 0
total: 1518786
transactions: 1518786 (25277.24 per sec.)
queries: 1518786 (25277.24 per sec.)
ignored errors: 1944 (32.35 per sec.)
reconnects: 0 (0.00 per sec.)
General statistics:
total time: 60.0829s
total number of events: 1518786
Latency (ms):
min: 0.47
avg: 2.53
max: 1015.04
95th percentile: 6.91
sum: 3835098.18
Threads fairness:
events (avg/stddev): 23731.0312/213.31
execution time (avg/stddev): 59.9234/0.02
系统负载
CPU消耗了66%
-bash-4.1$ iostat sdc -xk 5
Linux 2.6.32-431.el6.x86_64 (node5) 2017年03月13日 _x86_64_ (32 CPU)
avg-cpu: %user %nice %system %iowait %steal %idle
47.09 0.00 18.35 0.47 0.00 34.10
Device: rrqm/s wrqm/s r/s w/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util
sdc 0.00 4195.60 0.00 19787.60 0.00 95932.80 9.70 0.98 0.05 0.02 42.54
汇总结果
8台worker的总qps为214362
[root@node1 ~]# for i in `seq 1 8` ; do ssh 192.168.0.18$i grep queries: /tmp/run_oltp_insert.log ; done
queries: 1518786 (25277.24 per sec.)
queries: 1587323 (26412.68 per sec.)
queries: 1700562 (28305.06 per sec.)
queries: 1631516 (27151.82 per sec.)
queries: 1615778 (26885.48 per sec.)
queries: 1649236 (27449.03 per sec.)
queries: 1621940 (26993.20 per sec.)
queries: 1554917 (25890.71 per sec.)
数据查询
在master上查询插入的记录数。
dbcitus=# select count(1) from sbtest1;
count
----------
12880058
(1 行记录)
时间:73.197 ms
查询是在128个分片上并行执行的,所以速度很快。
总结
citus的执行计划生成影响了数据插入的速度,通过Masterless部署可提升到20w/s以上。
进一步提升插入性能可以从citus源码入手,根据分片列值做快速SQL分发,避免在master上解析SQL,之前在另一个场景上做过原型,性能可提升10倍以上。
极致的做法是绕过master直接插入数据到worker上的分片表,还可以利用copy或批更新。
参考
Scaling Out Data Ingestion
Real-time Inserts:0-50k/s
Real-time Updates:0-50k/s
Bulk Copy:100-200k/s
Masterless Citus:50k/s-500k/s