决策树构建
ID3算法
ID3算法的核心是在决策树各个结点上对应信息增益准则选择特征,递归
地构建决策树。
从根结点(root node)开始,对结点计算所有可能的特征的信息增益,选择信息增益最大的特征作为结点的特征,由该特征的不同取值建立子节点;再对子结点递归地调用以上方法,构建决策树;直到所有特征的信息增益均很小或没有特征可以选择为止,最后得到一个决策树。
依然使用上篇决策树中的贷款数据演示
由于特征A3(有自己的房子)的信息增益值最大,所以选择特征A3作为根结点的特征。它将训练集D划分为两个子集D1(A3取值为”是”)和D2(A3取值为”否”)。由于D1只有同一类的样本点,所以它成为一个叶结点,结点的类标记为“是”。
对D2则需要从特征A1(年龄),A2(有工作)和A4(信贷情况)中选择新的特征,计算各个特征的信息增益:
- g(D2,A1) = H(D2) - H(D2 | A1) = 0.251
- g(D2,A2) = H(D2) - H(D2 | A2) = 0.918
- g(D2,A3) = H(D2) - H(D2 | A3) = 0.474
根据计算,选择信息增益最大的特征A2(有工作)作为结点的特征。由于A2有两个可能取值,从 这一结点引出两个子结点:一个对应”是”(有工作)的子结点,包含3个样本,它们属于同一类, 所以这是一个叶结点,类标记为”是”;另一个是对应”否”(无工作)的子结点,包含6个样本,它们也属于同一类,所以这也是一个叶结点,类标记为”否”。
生成了一个决策树,该决策树只用了两个特征(有两个内部结点)
代码构建决策树
# 构建出来的结果
{'有自己的房子': {0: {'有工作': {0: 'no', 1: 'yes'}}, 1: 'yes'}}
"""
函数说明:统计classList中出现此处最多的元素(类标签)
Parameters:
classList - 类标签列表
Returns:
sortedClassCount[0][0] - 出现此处最多的元素(类标签)
"""
def majorityCnt(classList):
classCount = {}
for vote in classList: #统计classList中每个元素出现的次数
if vote not in classCount.keys():classCount[vote] = 0
classCount[vote] += 1
sortedClassCount = sorted(classCount.items(), key = operator.itemgetter(1), reverse = True) #根据字典的值降序排序
return sortedClassCount[0][0] #返回classList 中出现次数最多的元素
"""
函数说明:创建决策树
Parameters:
dataSet - 训练数据集
labels - 分类属性标签
featLabels - 存储选择的最优特征标签
Returns:
myTree - 决策树
"""
def createTree(dataSet, labels, featLabels):
classList = [example[-1] for example in dataSet] #取分类标签(是否放贷:yes or no)
if classList.count(classList[0]) == len(classList): #如果类别完全相同则停止继续划分
return classList[0]
if len(dataSet[0]) == 1: #遍历完所有特征时 返回出现次数最多的类标签
return majorityCnt(classList)
bestFeat = chooseBestFeatureToSplit(dataSet) #选择最优特征
bestFeatLabel = labels[bestFeat] #最优特征的标签
featLabels.append(bestFeatLabel)
myTree = {bestFeatLabel:{}} #根据最优特征的标签生成树
del(labels[bestFeat]) #删除已经使用特征标签
featValues = [example[bestFeat] for example in dataSet] #得到训练集中所有最优特征的属性值
uniqueVals = set(featValues) #去掉重复的属性值
for value in uniqueVals: #遍历特征,创建决策树。
myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), labels, featLabels)
return myTree
if __name__ == '__main__':
dataSet, labels = createDataSet()
featLabels = []
myTree = createTree(dataSet, labels, featLabels)
print(myTree)
递归创建决策树时,递归有两个终止条件:第一个停止条件是所有的类标签完全相同,则直接返回该类标签;第二个停止条件是使用完了所有特征,仍然不能将数据划分仅包含唯一类别的分组,即决策树构建失败,特征不够用。此时说明数据纬度不够,由于第二个停止条件无法简单地返回唯一的类标签,这里挑选出现数量最多的类别作为返回值。
使用决策树执行分类
"""
函数说明:使用决策树分类
Parameters:
inputTree - 已经生成的决策树
featLabels - 存储选择的最优特征标签
testVec - 测试数据列表,顺序对应最优特征标签
Returns:
classLabel - 分类结果
"""
def classify(inputTree, featLabels, testVec):
firstStr = next(iter(inputTree)) #获取决策树结点
secondDict = inputTree[firstStr] #下⼀一个字典
featIndex = featLabels.index(firstStr)
for key in secondDict.keys():
if testVec[featIndex] == key:
if type(secondDict[key]).__name__ == 'dict':
classLabel = classify(secondDict[key], featLabels, testVec)
else: classLabel = secondDict[key]
return classLabel
if __name__ == '__main__':
dataSet, labels = createDataSet()
featLabels = []
myTree = createTree(dataSet, labels, featLabels)
testVec = [0,1] #测试数据
result = classify(myTree, featLabels, testVec)
if result == 'yes':
print('放贷')
if result == 'no':
print('不放贷')
决策树的存储
为了解决这个问题,需要使用Python模块pickle序列化对象。序列化对象可以在磁盘上保存对象,并在需要的时候读取出来。
import pickle
"""
函数说明:存储决策树
Parameters:
inputTree - 已经生成的决策树
filename - 决策树的存储文件名
Returns:
无
"""
def storeTree(inputTree, filename):
with open(filename, 'wb') as fw:
pickle.dump(inputTree, fw)
if __name__ == '__main__':
myTree = {'有自己的房子': {0: {'有工作': {0: 'no', 1: 'yes'}}, 1: 'yes'}}
storeTree(myTree, 'classifierStorage.txt')
import pickle
"""
函数说明:读取决策树
Parameters:
filename - 决策树的存储文件名
Returns:
pickle.load(fr) - 决策树字典
"""
def grabTree(filename):
fr = open(filename, 'rb')
return pickle.load(fr)
if __name__ == '__main__':
myTree = grabTree('classifierStorage.txt')
print(myTree)