其运行栈为:
handle_one_connection MySQL的网络模型是one request one thread
|-do_handle_one_connection
|-do_command
|-dispatch_command
|-mysql_parse 解析SQL
|-mysql_execute_command
|-execute_sqlcom_select 执行select语句
|-handle_select
...一堆parse join 等的操作,当前并不关心
|-*tab->read_record.read_record 读取记录
由于mysql默认隔离级别是repeatable_read(RR),所以read_record重载为
rr_sequential(当前我们并不关心select通过index扫描出row之后再通过condition过滤的过程)。继续追踪:
read_record
|-rr_sequential
|-ha_rnd_next
|-ha_innobase::rnd_next 这边就已经到了innodb引擎了
|-general_fetch
|-row_search_for_mysql
|-lock_clust_rec_cons_read_sees 这边就是判断并选择版本的地方
让我们看下该函数内部:
bool lock_clust_rec_cons_read_sees(const rec_t* rec /*由innodb扫描出来的一行*/,....){
...
// 从当前扫描的行中获取其最后修改的版本trx_id(事务id)
trx_id = row_get_rec_trx_id(rec, index, offsets);
// 通过参数(一致性快照视图和事务id)决定看到的行快照
return(read_view_sees_trx_id(view, trx_id));
}
read_view的创建过程
我们先关注一致性视图的创建过程,我们先看下read_view结构:
struct read_view_t{
// 由于是逆序排列,所以low/up有所颠倒
// 能看到当前行版本的高水位标识,>= low_limit_id皆不能看见
trx_id_t low_limit_id;
// 能看到当前行版本的低水位标识,< up_limit_id皆能看见
trx_id_t up_limit_id;
// 当前活跃事务(即未提交的事务)的数量
ulint n_trx_ids;
// 以逆序排列的当前获取活跃事务id的数组
// 其up_limit_id trx_id_t* trx_ids; // 创建当前视图的事务id trx_id_t creator_trx_id; // 事务系统中的一致性视图链表 UT_LIST_NODE_T(read_view_t) view_list; }; 然后通过debug,发现创建read_view结构也是在上述的rr_sequential中操作的,继续跟踪调用栈: rr_sequential |-ha_rnd_next |-rnd_next |-index_first 在start_of_scan为true时候走当前分支index_first |-index_read |-row_search_for_mysql |-trx_assign_read_view 我们看下row_search_for_mysql里的一个分支: row_search_for_mysql: // 这边只有select不加锁模式的时候才会创建一致性视图 else if (prebuilt->select_lock_type == LOCK_NONE) { // 创建一致性视图 trx_assign_read_view(trx); prebuilt->sql_stat_start = FALSE; } 上面的注释就是select for update(in share model)不会走MVCC的原因。让我们进一步分析trx_assign_read_view函数: trx_assign_read_view |-read_view_open_now |-read_view_open_now_low 好了,终于到了创建read_view的主要阶段,主要过程如下图所示: 代码过程为: static read_view_t* read_view_open_now_low(trx_id_t cr_trx_id,mem_heap_t* heap) { read_view_t* view; // 当前事务系统中max_trx_id(即尚未被分配的trx_id)设置为low_limit_no view->low_limit_no = trx_sys->max_trx_id; view->low_limit_id = view->low_limit_no; // CreateView构造函数,会将非当前事务和已经在内存中提交的事务给剔除,即判断条件为 // trx->id != m_view->creator_trx_id&& !trx_state_eq(trx, TRX_STATE_COMMITTED_IN_MEMORY)的 // 才加入当前视图列表 ut_list_map(trx_sys->rw_trx_list, &trx_t::trx_list, CreateView(view)); if (view->n_trx_ids > 0) { // 将当前事务系统中的最小id设置为up_limit_id,因为是逆序排列 view->up_limit_id = view->trx_ids[view->n_trx_ids - 1]; } else { // 如果当前没有非当前事务之外的活跃事务,则设置为low_limit_id view->up_limit_id = view->low_limit_id; } // 忽略purge事务,purge时,当前事务id是0 if (cr_trx_id > 0) { read_view_add(view); } // 返回一致性视图 return(view); } 行版本可见性: 由上面的lock_clust_rec_cons_read_sees可知,行版本可见性由read_view_sees_trx_id函数判断: /*********************************************************************//** Checks if a read view sees the specified transaction. @return true if sees */ UNIV_INLINE bool read_view_sees_trx_id( /*==================*/ const read_view_t* view, /*!< in: read view */ trx_id_t trx_id) /*!< in: trx id */ { if (trx_id < view->up_limit_id) { return(true); } else if (trx_id >= view->low_limit_id) { return(false); } else { ulint lower = 0; ulint upper = view->n_trx_ids - 1; ut_a(view->n_trx_ids > 0); do { ulint mid = (lower + upper) >> 1; trx_id_t mid_id = view->trx_ids[mid]; if (mid_id == trx_id) { return(FALSE); } else if (mid_id < trx_id) { if (mid > 0) { upper = mid - 1; } else { break; } } else { lower = mid + 1; } } while (lower <= upper); } return(true); } 其实上述函数就是一个二分法,read_view其实保存的是当前活跃事务的所有事务id,如果当前行版本对应修改的事务id不在当前活跃事务里面的话,就返回true,表示当前版本可见,否则就是不可见,如下图所示。 接上述lock_clust_rec_cons_read_sees的返回: if (UNIV_LIKELY(srv_force_recovery < 5) && !lock_clust_rec_cons_read_sees( rec, index, offsets, trx->read_view)){ // 当前处理的是当前版本不可见的情况 // 通过undolog来返回到一致的可见版本 err = row_sel_build_prev_vers_for_mysql( trx->read_view, clust_index, prebuilt, rec, &offsets, &heap, &old_vers, &mtr); } else{ // 可见,然后返回 } undolog搜索可见版本的过程 我们现在考察一下row_sel_build_prev_vers_for_mysql函数: row_sel_build_prev_vers_for_mysql |-row_vers_build_for_consistent_read 主要是调用了row_ver_build_for_consistent_read方法返回可见版本: dberr_t row_vers_build_for_consistent_read(...) { ...... for(;;){ err = trx_undo_prev_version_build(rec, mtr,version,index,*offsets, heap,&prev_version); ...... trx_id = row_get_rec_trx_id(prev_version, index, *offsets); // 如果当前row版本符合一致性视图,则返回 if (read_view_sees_trx_id(view, trx_id)) { ...... break; } // 如果当前row版本不符合,则继续回溯上一个版本(回到for循环的地方) version = prev_version; } ...... } 整个过程如下图所示: 至于undolog怎么恢复出对应版本的row记录就又是一个复杂的过程了,由于篇幅原因,在此略过不表。 read_view创建时机再讨论 在创建一致性视图的row_search_for_mysql的代码中 // 只有非锁模式的select才创建一致性视图 else if (prebuilt->select_lock_type == LOCK_NONE) { // 创建一致性视图 trx_assign_read_view(trx); prebuilt->sql_stat_start = FALSE; } trx_assign_read_view中由这么一段代码 // 一致性视图在一个事务只创建一次 if (!trx->read_view) { trx->read_view = read_view_open_now( trx->id, trx->global_read_view_heap); trx->global_read_view = trx->read_view; } 深圳网站建设www.sz886.com