(多输入+动态维度)整理的自定义神经网络pt转onnx过程的python代码,记录了pt文件转onnx全过程,简单的修改即可应用。
预处理代码 与torch模型的预处理代码一样
def preprocess(img):
img = (cv2.cvtColor(img, cv2.COLOR_BGR2RGB)).transpose(2, 0, 1)
img = np.expand_dims(img, 0)
sh_im = img.shape
if sh_im[2]%2==1:
img = np.concatenate((img, img[:, :, -1, :][:, :, np.newaxis, :]), axis=2)
if sh_im[3]%2==1:
img = np.concatenate((img, img[:, :, :, -1][:, :, :, np.newaxis]), axis=3)
img = normalize(img)
img = torch.Tensor(img)
return img
def export_onnx(net, model_path, img, nsigma, onnx_outPath):
nsigma /= 255.
if torch.cuda.is_available():
state_dict = torch.load(model_path)
model = net.cuda()
dtype = torch.cuda.FloatTensor
else:
state_dict = torch.load(model_path, map_location='cpu')
state_dict = remove_dataparallel_wrapper(state_dict)
model = net
dtype = torch.FloatTensor
img = Variable(img.type(dtype))
nsigma = Variable(torch.FloatTensor([nsigma]).type(dtype))
# 我这里预训练权重中参数名字与网络名字不同
# 相同的话可直接load_state_dict(state_dict)
new_state_dict = {}
for k, v in state_dict.items():
new_state_dict[k[7:]] = v
model.load_state_dict(new_state_dict)
# 设置onnx的输入输出列表,多输入多输出就设置多个
input_list = ['input', 'nsigma']
output_list = ['output']
# onnx模型导出
# dynamic_axes为动态维度,如果自己的输入输出是维度变化的建议设置,否则只能输入固定维度的tensor
torch.onnx.export(model, (img, nsigma), onnx_outPath, verbose=True, opset_version=11, export_params=True,
input_names=input_list, output_names=output_list,
dynamic_axes={'input_img': {0: 'batch', 1: 'channel', 2: 'height', 3: 'width'},
'output': {0: 'batch', 1: 'channel', 2: 'height', 3: 'width'}})
此处为检查onnx模型节点,后面如果onnx算子不支持转engine时,方便定位节点,找到不支持的算子进行修改
def check_onnx(onnx_model_path):
model = onnx.load(onnx_model_path)
onnx.checker.check_model((model))
print(onnx.helper.printable_graph(model.graph))
def run_onnx(onnx_model_path, test_img, nsigma):
nsigma /= 255.
with torch.no_grad:
# 这里默认是cuda推理torch.cuda.FloatTensor
img = Variable(test_img.type(torch.cuda.FloatTensor))
nsigma = Variable(torch.FloatTensor([nsigma]).type(torch.cuda.FloatTensor))
# 设置GPU推理
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
providers = ['CUDAExecutionProvider'] if device != "cpu" else ['CPUExecutionProvider']
# 通过创建onnxruntime session来运行onnx模型
ort_session = ort.InferenceSession(onnx_model_path, providers=providers)
output = ort_session.run(output_names=['output'],
input_feed={'input_img': np.array(img.cpu(), dtype=np.float32),
'nsigma': np.array(nsigma.cpu(), dtype=np.float32)})
return output
def postprocess(img, img_noise_estime):
out = torch.clamp(img-img_noise_estime, 0., 1.)
outimg = variable_to_cv2_image(out)
cv2.imshow(outimg)
def main():
##############################
#
# onnx模型导出
#
##############################
# pt权重路径:自己的路径 + mypt.pt
model_path = "D:/python/ffdnet-pytorch/models/net_rgb.pth"
# export onnx模型时输入进去数据,用于onnx记录网络的计算过程
export_feed_path = "D:/python/ffdnet-pytorch/noisy.png"
# onnx模型导出的路径
onnx_outpath = "D:/python/ffdnet-pytorch/models/myonnx.onnx"
# 实例化自己的网络模型并设置输入参数
net = FFDNet(num_input_channels=3)
nsigma = 25
# onnx 导出
img = cv2.imread(export_feed_path)
input = preprocess(img)
export_onnx(net, model_path, input, nsigma, onnx_outpath)
print("export success!")
##############################
#
# 检查onnx模型
#
##############################
check_onnx(onnx_outpath)
# netron可视化网络,可视化用节点记录的网络推理流程
netron.start(onnx_outpath)
##############################
#
# 运行onnx模型
#
##############################
# 此处过程是数据预处理 ---> 调用run_onnx函数 ---> 对模型输出后处理
# 具体代码就不再重复了
#完整代码
import time
import netron
import cv2
import torch
import onnx
import numpy as np
from torch.autograd import Variable
import onnxruntime as ort
from models import FFDNet
from utils import remove_dataparallel_wrapper, normalize, variable_to_cv2_image
# 此处为预处理代码 与torch模型的预处理代码一样
def preprocess(img):
img = (cv2.cvtColor(img, cv2.COLOR_BGR2RGB)).transpose(2, 0, 1)
img = np.expand_dims(img, 0)
sh_im = img.shape
if sh_im[2]%2==1:
img = np.concatenate((img, img[:, :, -1, :][:, :, np.newaxis, :]), axis=2)
if sh_im[3]%2==1:
img = np.concatenate((img, img[:, :, :, -1][:, :, :, np.newaxis]), axis=3)
img = normalize(img)
img = torch.Tensor(img)
return img
# 此处为onnx模型导出的代码,包括torch模型的pt权重加载,onnx模型的导出
def export_onnx(net, model_path, img, nsigma, onnx_outPath):
nsigma /= 255.
if torch.cuda.is_available():
state_dict = torch.load(model_path)
model = net.cuda()
dtype = torch.cuda.FloatTensor
else:
state_dict = torch.load(model_path, map_location='cpu')
state_dict = remove_dataparallel_wrapper(state_dict)
model = net
dtype = torch.FloatTensor
img = Variable(img.type(dtype))
nsigma = Variable(torch.FloatTensor([nsigma]).type(dtype))
# 我这里预训练权重中参数名字与网络名字不同
# 相同的话可直接load_state_dict(state_dict)
new_state_dict = {}
for k, v in state_dict.items():
new_state_dict[k[7:]] = v
model.load_state_dict(new_state_dict)
# 设置onnx的输入输出列表,多输入多输出就设置多个
input_list = ['input', 'nsigma']
output_list = ['output']
# onnx模型导出
# dynamic_axes为动态维度,如果自己的输入输出是维度变化的建议设置,否则只能输入固定维度的tensor
torch.onnx.export(model, (img, nsigma), onnx_outPath, verbose=True, opset_version=11, export_params=True,
input_names=input_list, output_names=output_list,
dynamic_axes={'input_img': {0: 'batch', 1: 'channel', 2: 'height', 3: 'width'},
'output': {0: 'batch', 1: 'channel', 2: 'height', 3: 'width'}})
# 此处为检查onnx模型节点,后面如果onnx算子不支持转engine时,方便定位节点,找到不支持的算子进行修改
def check_onnx(onnx_model_path):
model = onnx.load(onnx_model_path)
onnx.checker.check_model((model))
print(onnx.helper.printable_graph(model.graph))
# 此处为推理onnx模型的代码,检查输出是否跟torch模型相同
def run_onnx(onnx_model_path, test_img, nsigma):
nsigma /= 255.
with torch.no_grad:
# 这里默认是cuda推理torch.cuda.FloatTensor
img = Variable(test_img.type(torch.cuda.FloatTensor))
nsigma = Variable(torch.FloatTensor([nsigma]).type(torch.cuda.FloatTensor))
# 设置GPU推理
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
providers = ['CUDAExecutionProvider'] if device != "cpu" else ['CPUExecutionProvider']
# 通过创建onnxruntime session来运行onnx模型
ort_session = ort.InferenceSession(onnx_model_path, providers=providers)
output = ort_session.run(output_names=['output'],
input_feed={'input_img': np.array(img.cpu(), dtype=np.float32),
'nsigma': np.array(nsigma.cpu(), dtype=np.float32)})
return output
# 此处是后处理代码,将onnx模型的输出处理成可显示cv图像
# 与torch模型的后处理一样
def postprocess(img, img_noise_estime):
out = torch.clamp(img-img_noise_estime, 0., 1.)
outimg = variable_to_cv2_image(out)
cv2.imshow(outimg)
def main():
##############################
#
# onnx模型导出
#
##############################
# pt权重路径:自己的路径 + mypt.pt
model_path = "D:/python/ffdnet-pytorch/models/net_rgb.pth"
# export onnx模型时输入进去数据,用于onnx记录网络的计算过程
export_feed_path = "D:/python/ffdnet-pytorch/noisy.png"
# onnx模型导出的路径
onnx_outpath = "D:/python/ffdnet-pytorch/models/myonnx.onnx"
# 实例化自己的网络模型并设置输入参数
net = FFDNet(num_input_channels=3)
nsigma = 25
# onnx 导出
img = cv2.imread(export_feed_path)
input = preprocess(img)
export_onnx(net, model_path, input, nsigma, onnx_outpath)
print("export success!")
##############################
#
# 检查onnx模型
#
##############################
onnx_outpath = "D:/python/ffdnet-pytorch/models/myonnx.onnx"
check_onnx(onnx_outpath)
# netron可视化网络,可视化用节点记录的网络推理流程
netron.start(onnx_outpath)
##############################
#
# 运行onnx模型
#
##############################
# 此处过程是数据预处理 ---> 调用run_onnx函数 ---> 对模型输出后处理
# 具体代码就不再重复了
if __name__ == '__main__':
main()