异或运算求数组中缺失或出现奇数次的数

对于异或运算,首先得知道的基础是相同的数异或结果是0,0异或任何数都是这个数本身,异或满足交换律

如果一个数组中除了两个数出现奇数次,其他的都是出现偶数次,那么对所有的数进行异或运算最终的结果a就是这两个出现奇数次的数的异或和,因为两个相同的数异或是0,0异或任何数都等于这个数!

但是还没有结束,如何求出这两个数分别是什么才是关键,由于这两个数不同,那么他们至少有一个比特位上不同,利用位运算求出是哪一位不同,假设是left_bit位不同,然后对数组中所有的数进行分类,第left_bit位是1的数分为一类A,第left_bit位是0的数分为一类B,将A和a进行异或就得到了第一个出现次数是奇数的数x1,同理得到x2

一道中等题 M260
题解如下:

class Solution:
    def singleNumber(self, nums: List[int]) -> List[int]:
        # 假设两个数分别为x1,x2
        a = 0
        for i in nums:
            a ^= i
        # x1^x2=a
        left_bit = 0
        # 找到a左边第一位为1的位置,说明x1,x2在这一位不同
        #    按照第left_bit位置是不是0可以将所有的数分为两类
        #    其中一类包含x1,另一类包含x2
        # 注意:最右边哪一位是1是要右移,不是左移!
        for i in range(0, 16):
            if (a >> i) & 1 == 1:
                left_bit = i
                break
        x1 = 0
        x2 = 0
        for i in nums:
            if (i >> left_bit) & 1 == 0:
                x1 ^= i
            else:
                x2 ^= i
        return [x1, x2]

再来一道困难题,其实就插在有两个数没有出现,其实只要在后面补一个满得就跟上面得题目一模一样了:
H17.19

题解如下:

class Solution:
    def missingTwo(self, nums: List[int]) -> List[int]:
        n = len(nums)+2
        nums = nums+[i for i in range(1,n+1)]
        # 假设两个数分别为x1,x2
        a = 0
        for i in nums:
            a ^= i
        # x1^x2=a
        left_bit = 0
        # 找到a左边第一位为1的位置,说明x1,x2在这一位不同
        #    按照第left_bit位置是不是0可以将所有的数分为两类
        #    其中一类包含x1,另一类包含x2
        # 注意:最右边哪一位是1是要右移,不是左移!
        for i in range(0, 16):
            if (a >> i) & 1 == 1:
                left_bit = i
                break
        x1 = 0
        x2 = 0
        for i in nums:
            if (i >> left_bit) & 1 == 0:
                x1 ^= i
            else:
                x2 ^= i
        return [x1, x2]




你可能感兴趣的:(算法相关,leetcode,算法,职场和发展)