register_parameter和register_buffer 详解

在参考yolo系列代码或其他开源代码,经常看到register_buffer register_parameter的使用,接下来将详细对他们进行介绍。

1. 前沿

在搭建网络时,我们 自定义的参数,往往不会保存到模型权重文件中,或者成为模型可学习的参数。即我们通过 net.named_parameters() (模型可学习参数)或 net.state_dict().items()(保存模型权重值)方法都无法遍历输出。那如何解决呢,这就需要用到本文讲的register_parameterregister_buffer方法。

2. register_parameter

register_parameter() 是 torch.nn.Module 类中的一个方法。

2.1 主要作用

  • 用于定义可学习参数
  • 定义的参数可被保存到网络对象的参数中,可使用 net.parameters()net.named_parameters() 查看
  • 定义的参数可用 net.state_dict() 转换到字典中,进而 保存到网络文件 / 网络参数文件

2.2 函数说明

register_parameter(name,param)

参数:

  • name:参数名称

  • param:参数张量, 须是torch.nn.Parameter()对象 或 None ,否则报错如下
    TypeError: cannot assign 'torch.FloatTensor' object to parameter 'xx' (torch.nn.Parameter or None required)

2.3 举例说明

(1)自定义的参数未使用register_parameter

import torch
import torch.nn as nn


class MyModule(nn.Module):
    def __init__(self):
        super(MyModule, self).__init__()
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=6, kernel_size=3, stride=1, padding=1, bias=False)
        self.conv2 = nn.Conv2d(in_channels=6, out_channels=9, kernel_size=3, stride=1, padding=1, bias=False)

        self.weight = torch.ones(10,10)
        self.bias = torch.zeros(10)


    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = x * self.weight + self.bias
        return x


net = MyModule()

print('\n', '*'*30+"net.named_parameters"+'*'*30, '\n')
for name, param in net.named_parameters():
    print(name, param.shape)


print('\n', '*'*30+"net.state_dict"+'*'*30, '\n')
for key, val in net.state_dict().items():
    print(key, val.shape) 

输出:
register_parameter和register_buffer 详解_第1张图片
在网络搭建的代码中,我们自定义了self.weightself.bias参数。我们思考下2个问题:1. 我们定义的self.weightself.bias参数是否会保存到网络的参数中,是否能在优化器的作用下进行学习。2. 这些参数是否能够保存到模型文件中,从而可以利用state_dict中遍历出来。通过上面的打印信息我们发现:

  • 使用net.named_parameters()迭代网络中可学习的参数,发现输出的参数只有conv1conv2的weight参数,并没有输出我们定义的self.weightself.bias
  • 接下来使用net.state_dict()方法迭代保存的参数,同样发现self.weightself.bias参数也没有被输出出来。

(2)通过register_parameter方法来定义参数

  • 接下来我们使用register_parameter来定义weight和bias参数,看看会有啥效果。代码修改如下:
self.register_parameter('weight',torch.nn.Parameter(torch.ones(10,10)))
self.register_parameter('bias',torch.nn.Parameter(torch.zeros(10)))

完整代码

import torch
import torch.nn as nn


class MyModule(nn.Module):
    def __init__(self):
        super(MyModule, self).__init__()
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=6, kernel_size=3, stride=1, padding=1, bias=False)
        self.conv2 = nn.Conv2d(in_channels=6, out_channels=9, kernel_size=3, stride=1, padding=1, bias=False)

        self.register_parameter('weight',torch.nn.Parameter(torch.ones(10,10)))
        self.register_parameter('bias',torch.nn.Parameter(torch.zeros(10)))


    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = x * self.weight + self.bias
        return x


net = MyModule()

print('\n', '*'*30+"net.named_parameters"+'*'*30, '\n')
for name, param in net.named_parameters():
    print(name, param.shape)


print('\n', '*'*30+"net.state_dict"+'*'*30, '\n')
for key, val in net.state_dict().items():
    print(key, val.shape) 

register_parameter和register_buffer 详解_第2张图片

  • 可以看到,使用了register_parameter定义的参数weight和bias,可以通过net.named_parameters或者net.parameters迭代出来的,这说明weight和bias已经存到了网络的参数中,他们是可学习的参数
  • 同时,通过state_dict()也能将参数和值给迭代出来,就说明如果要保存模型权重或网络参数时,这两个参数时可以被保存起来的。

3 register_buffer()

register_buffer()是 torch.nn.Module() 类中的一个方法

3.1 作用

  • 用于定义不可学习的参数
  • 定义的参数不会被保存到网络对象的参数中,使用 net.parameters() 或 net.named_parameters() 查看不到
  • 定义的参数可用 net.state_dict() 转换到字典中,进而 保存到网络文件 / 网络参数文件中

register_buffer() 用于在网络实例中 注册缓冲区,存储在缓冲区中的数据,类似于参数(但不是参数),它与参数的区别为:

  • 参数:可以被优化器更新 (requires_grad=False / True)

  • buffer 中的数据 (不可学习): 不会被优化器更新

3.2、举例说明

将定义的weight和bias,通过register_buffer来定义。

self.register_buffer('weight',torch.ones(10,10))
self.register_buffer('bias',torch.zeros(10))

运行完整代码看看效果:

import torch
import torch.nn as nn


class MyModule(nn.Module):
    def __init__(self):
        super(MyModule, self).__init__()
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=6, kernel_size=3, stride=1, padding=1, bias=False)
        self.conv2 = nn.Conv2d(in_channels=6, out_channels=9, kernel_size=3, stride=1, padding=1, bias=False)

        self.register_buffer('weight',torch.ones(10,10))
        self.register_buffer('bias',torch.zeros(10))


    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = x * self.weight + self.bias
        return x


net = MyModule()z

print('\n', '*'*30+"net.named_parameters"+'*'*30, '\n')
for name, param in net.named_parameters():
    print(name, param.shape)


print('\n', '*'*30+"net.state_dict"+'*'*30, '\n')
for key, val in net.state_dict().items():
    print(key, val.shape) 

register_parameter和register_buffer 详解_第3张图片
我们可以看到:

  • 通过register_buffer定义的参数weight和bias,它是没有被named_parameter给迭代出来的,也就是说weight和bias不是网络的可学习参数,无法通过优化器来迭代更新,我们把它叫做buffer,而不是参数
  • 然而我们使用net.state_dict去迭代的话,weight和bias事可以被迭代出来的,这就说明使用register_buffer定义的数据,可以保持到模型或者权重文件中。

注意:

  • 在使用register_parameter定义参数时,必须定义为可学习的参数,因此需要通过torch.nn.Parameter去定义为一个可学习的参数
  • 而我们使用register_buffer定义参数时,是不需要通过torch.nn.Parameter去定义为可学习的参数的

你可能感兴趣的:(深度学习,python,计算机视觉,机器学习,python)