可以理解为一个会自动清除空间的union
,保证了赋值时内存的正确性,能够自动进行析构。
通过get
可传入下标或者type
来获取值,但是不安全,如果传入类型于当前类型不一致时会引发错误。
可以通过get_if
传入下标或者值和variant
指针来安全获得值。
有类模板variant_alternative
来获取第几个属性的type
,以及类模板variant_size
来获取variant
中存放了多少个属性。
int main() {
std::variant<int, float> a;
a = 1;
auto int_value = std::get<int>(a);
std::cout << int_value << "\n";
try {
auto float_value = std::get<float>(a);
} catch (const std::bad_variant_access &e) {
std::cout << e.what() << "\n";
}
std::cout << std::holds_alternative<int>(a) << " "
<< std::holds_alternative<float>(a) << "\n";
a = 1.1f;
std::cout << std::holds_alternative<int>(a) << " "
<< std::holds_alternative<float>(a) << "\n";
std::cout << std::get<float>(a) << " " << std::get<1>(a) << "\n";
// std::cout << std::get(a) << " " << std::get<0>(a) << "\n";
std::cout << std::get_if<0>(&a) << " " << std::get_if<int>(&a) << "\n";
std::cout << std::get_if<1>(&a) << " " << std::get_if<float>(&a) << "\n";
std::variant_alternative<1, decltype(a)>::type f = 1.2;
std::cout << f << "\n";
std::cout << std::variant_size_v<decltype(a)> << "\n";
return 0;
}
union
模板一层一层嵌套,即可得到我们的variant
存储结构,整体的内存占用情况为sizeof(largestType
:
template<typename ...Ts> union __union;
template<typename T, typename ...Ts>
union __union<T, Ts...> {
using type = __union;
using rest_type = __union<Ts...>;
using value_type = T;
T value_;
rest_type rest_;
template<typename Tv>
requires std::is_same_v<std::decay_t<Tv>, T>
__union(Tv&& value) : value_(std::forward<Tv>(value)) {}
template <typename Tv>
__union(Tv&& rest) : rest_(std::forward<Tv>(rest)) {}
__union() {}
~ __union() {}
};
template<typename T>
union __union<T> {
using type = __union;
using value_type = T;
T value_;
template<typename Tv>
requires std::is_same_v<std::decay_t<Tv>, T>
__union(Tv&& value) : value_(std::forward<Tv>(value)) {}
__union() {}
~ __union() {}
};
简单测试访问一下看看:
int a = 114;
auto u1 = __union<short int, int, unsigned int, long long, float, double>(a);
std::cout << u1.value_ << " " << u1.rest_.value_ << " " << u1.rest_.rest_.value_ << " "
<< u1.rest_.rest_.rest_.value_ << " " << u1.rest_.rest_.rest_.rest_.value_ << " "
<< u1.rest_.rest_.rest_.rest_.rest_.value_ << "\n";
const double b = 115.514;
auto u2 = __union<short int, int, unsigned int, long long, float, double>(b);
std::cout << u2.value_ << " " << u2.rest_.value_ << " " << u2.rest_.rest_.value_ << " "
<< u2.rest_.rest_.rest_.value_ << " " << u2.rest_.rest_.rest_.rest_.value_ << " "
<< u2.rest_.rest_.rest_.rest_.rest_.value_ << "\n";
std::string str = "lifehappy";
auto u3 = __union<int, double, std::string>(std::move(str));
std::cout << u3.value_ << " " << u3.rest_.value_ << " " << u3.rest_.rest_.value_ << " : __union\n";
std::cout << str << " : str\n";
114 114 114 4294967410 1.59748e-43 2.122e-314
-30409 1614907703 1614907703 4637828992051808567 5.5783e+19 115.514
1701210476 4.06896e+233 lifehappy : __union
: str
template<typename ...Ts>
struct variant {
using type = variant;
using data_type = __union<Ts...>;
__union<Ts...> data_;
template<typename Tv>
variant(Tv&& data) : data_(std::forward<Tv>(data)) {}
variant() {}
~ variant() {}
};
template<int N, typename ...Ts> struct variant_alternative {};
template<int N, typename ...Ts>
struct variant_alternative<N, variant<Ts...>>
: variant_alternative<N, typename variant<Ts...>::data_type> {};
template<int N, typename ...Ts>
struct variant_alternative<N, __union<Ts...>>
: variant_alternative<N - 1, typename __union<Ts...>::rest_type> {};
template<typename ...Ts>
struct variant_alternative<0, __union<Ts...>> {
using type = __union<Ts...>::value_type;
};
template<int N, typename ...Ts>
using variant_alternative_t = variant_alternative<N, Ts...>::type;
template<typename ...Ts> struct variant_size {};
template<typename ...Ts>
struct variant_size<variant<Ts...>>
: std::integral_constant<int, sizeof...(Ts)> {};
template<typename ...Ts>
constexpr static int variant_size_v = variant_size<Ts...>::value;
这里的实现并不会像std::variant
一样,即可以把我们的实现认为就是一个union
:
get< N >
template<int N, typename T>
struct get_impl {
static auto&& get(T &data) {
return get_impl<N - 1, typename T::rest_type>::get(data.rest_);
}
};
template<typename T>
struct get_impl<0, T> {
static T::value_type& get(T &data) {
return data.value_;
}
};
template<int N, typename T>
static auto&& get(T &var) {
return get_impl<N, typename T::data_type>::get(var.data_);
}
get< type >
template<typename T, typename Tv>
struct get_type_impl {
static auto&& get(Tv &data) {
return get_type_impl<T, typename Tv::rest_type>::get(data.rest_);
}
};
template<typename Tv>
struct get_type_impl<typename Tv::value_type, Tv> {
static Tv::value_type& get(Tv &data) {
return data.value_;
}
};
template<typename T, typename Tv>
static auto&& get(Tv &var) {
return get_type_impl<T, typename Tv::data_type>::get(var.data_);
}
这里也是variant
最重要的功能了,能够在赋值的时候自动析构原来保存的值。
先看不加析构函数的版本:
template<typename Tv>
variant& operator = (Tv&& data) {
new (&data_) data_type(std::forward<Tv>(data));
return *this;
}
TEST
struct Test {
~ Test() {
std::cout << "~ Test()\n";
}
};
Test a, b;
variant<int, long long, Test> variant_test(a);
std::cout << "OK\n";
variant_test = b;
std::cout << "OK\n";
OK
OK
~ Test()
~ Test()
只有最后a、b
的两次析构,缺少了赋值时和销毁variant
时的析构调用。
要能够析构,那么势必我们需要保存当前的type
,为了方便,这里直接使用一个int
变量来保存type
所对应的下标,
同时实现一个类模板,获取当前值在列表中的位置。
template<typename Tu, typename T> struct type_index_impl
: std::integral_constant<int, type_index_impl<typename Tu::rest_type, T>::value + 1> {};
template<typename Tu>
struct type_index_impl<Tu, typename Tu::value_type>
: std::integral_constant<int, 0> {};
template<typename Tu, typename T>
constexpr static int type_index = type_index_impl<Tu, T>::value;
得到所有类型的析构函数,由于variant
的类型是动态加载的,考虑将所有类型的destructor
存下来,按需调用:
std::function<void(void *)> destructors[sizeof...(Ts)] =
{ [](void *ptr) { static_cast<Ts*>(ptr)->~Ts(); }... };
接着稍微修改一下operator =、~variant()
:
template<typename Tv>
variant& operator = (Tv&& data) {
if (~type_) {
destructors[type_](&data_);
}
new (&data_) data_type(std::forward<Tv>(data));
type_ = type_index<data_type, std::decay_t<Tv>>;
return *this;
}
~ variant() {
if (~type_) {
destructors[type_](&data_);
}
}
TEST
struct Test1 {
~ Test1() {
std::cout << "~ Test1()\n";
}
}a;
struct Test2 {
~ Test2() {
std::cout << "~ Test2()\n";
}
}b;
variant<int, long long, Test1, Test2> variant_test(a);
std::cout << "OK\n";
variant_test = b;
std::cout << "OK\n";
OK
- Test1()
OK- Test2()
- Test2()
- Test1()
#include
#include
#include
#include
template<typename ...Ts> union __union;
template<typename T, typename ...Ts>
union __union<T, Ts...> {
using type = __union;
using rest_type = __union<Ts...>;
using value_type = T;
T value_;
rest_type rest_;
template<typename Tv>
requires std::is_same_v<std::decay_t<Tv>, T>
__union(Tv&& value) : value_(std::forward<Tv>(value)) {}
template <typename Tv>
__union(Tv&& rest) : rest_(std::forward<Tv>(rest)) {}
__union() {}
~ __union() {}
};
template<typename T>
union __union<T> {
using type = __union;
using value_type = T;
T value_;
template<typename Tv>
requires std::is_same_v<std::decay_t<Tv>, T>
__union(Tv&& value) : value_(std::forward<Tv>(value)) {}
__union() {}
~ __union() {}
};
template<typename Tu, typename T> struct type_index_impl
: std::integral_constant<int, type_index_impl<typename Tu::rest_type, T>::value + 1> {};
template<typename Tu>
struct type_index_impl<Tu, typename Tu::value_type>
: std::integral_constant<int, 0> {};
template<typename Tu, typename T>
constexpr static int type_index = type_index_impl<Tu, T>::value;
template<typename ...Ts>
struct variant {
using type = variant;
using data_type = __union<Ts...>;
__union<Ts...> data_;
int type_{-1};
std::function<void(void *)> destructors[sizeof...(Ts)] =
{ [](void *ptr) { static_cast<Ts*>(ptr)->~Ts(); }... };
template<typename Tv>
variant(Tv&& data) : data_(std::forward<Tv>(data)),
type_(type_index<data_type, std::decay_t<Tv>>) {}
template<typename Tv>
variant& operator = (Tv&& data) {
if (~type_) {
destructors[type_](&data_);
}
new (&data_) data_type(std::forward<Tv>(data));
type_ = type_index<data_type, std::decay_t<Tv>>;
return *this;
}
variant() {}
~ variant() {
if (~type_) {
destructors[type_](&data_);
}
}
};
template<int N, typename ...Ts> struct variant_alternative {};
template<int N, typename ...Ts>
struct variant_alternative<N, variant<Ts...>>
: variant_alternative<N, typename variant<Ts...>::data_type> {};
template<int N, typename ...Ts>
struct variant_alternative<N, __union<Ts...>>
: variant_alternative<N - 1, typename __union<Ts...>::rest_type> {};
template<typename ...Ts>
struct variant_alternative<0, __union<Ts...>> {
using type = __union<Ts...>::value_type;
};
template<int N, typename ...Ts>
using variant_alternative_t = variant_alternative<N, Ts...>::type;
template<typename ...Ts> struct variant_size {};
template<typename ...Ts>
struct variant_size<variant<Ts...>>
: std::integral_constant<int, sizeof...(Ts)> {};
template<typename ...Ts>
constexpr static int variant_size_v = variant_size<Ts...>::value;
template<int N, typename T>
struct get_n_impl {
static auto&& get(T &data) {
return get_n_impl<N - 1, typename T::rest_type>::get(data.rest_);
}
};
template<typename T>
struct get_n_impl<0, T> {
static T::value_type& get(T &data) {
return data.value_;
}
};
template<int N, typename T>
static auto&& get(T &var) {
return get_n_impl<N, typename T::data_type>::get(var.data_);
}
template<typename T, typename Tv>
struct get_type_impl {
static auto&& get(Tv &data) {
return get_type_impl<T, typename Tv::rest_type>::get(data.rest_);
}
};
template<typename Tv>
struct get_type_impl<typename Tv::value_type, Tv> {
static Tv::value_type& get(Tv &data) {
return data.value_;
}
};
template<typename T, typename Tv>
static auto&& get(Tv &var) {
return get_type_impl<T, typename Tv::data_type>::get(var.data_);
}
int main() {
int a = 114;
auto u1 = __union<short int, int, unsigned int, long long, float, double>(a);
std::cout << u1.value_ << " " << u1.rest_.value_ << " " << u1.rest_.rest_.value_ << " "
<< u1.rest_.rest_.rest_.value_ << " " << u1.rest_.rest_.rest_.rest_.value_ << " "
<< u1.rest_.rest_.rest_.rest_.rest_.value_ << "\n";
const double b = 115.514;
auto u2 = __union<short int, int, unsigned int, long long, float, double>(b);
std::cout << u2.value_ << " " << u2.rest_.value_ << " " << u2.rest_.rest_.value_ << " "
<< u2.rest_.rest_.rest_.value_ << " " << u2.rest_.rest_.rest_.rest_.value_ << " "
<< u2.rest_.rest_.rest_.rest_.rest_.value_ << "\n";
std::string str1 = "lifehappy";
auto u3 = __union<int, double, std::string>(std::move(str1));
std::cout << u3.value_ << " " << u3.rest_.value_ << " " << u3.rest_.rest_.value_ << " : __union\n";
std::cout << str1 << " : str\n";
auto v3 = variant<int, double, std::string>();
std::cout << std::is_same_v<int, variant_alternative_t<0, decltype(v3)>> << " "
<< std::is_same_v<double, variant_alternative_t<1, decltype(v3)>> << " "
<< std::is_same_v<std::string, variant_alternative_t<2, decltype(v3)>> << "\n";
std::cout << std::is_same_v<int, variant_alternative_t<0, decltype(u3)>> << " "
<< std::is_same_v<double, variant_alternative_t<1, decltype(u3)>> << " "
<< std::is_same_v<std::string, variant_alternative_t<2, decltype(u3)>> << "\n";
std::cout << std::is_same_v<variant_alternative_t<0, decltype(v3)>, variant_alternative<0, decltype(v3)>::type> << " "
<< std::is_same_v<variant_alternative_t<1, decltype(v3)>, variant_alternative<1, decltype(v3)>::type> << " "
<< std::is_same_v<variant_alternative_t<2, decltype(v3)>, variant_alternative<2, decltype(v3)>::type> << "\n";
std::cout << std::is_same_v<variant_alternative_t<0, decltype(u3)>, variant_alternative<0, decltype(u3)>::type> << " "
<< std::is_same_v<variant_alternative_t<1, decltype(u3)>, variant_alternative<1, decltype(u3)>::type> << " "
<< std::is_same_v<variant_alternative_t<2, decltype(u3)>, variant_alternative<2, decltype(u3)>::type> << "\n";
std::cout << variant_size<decltype(v3)>::value << " " << variant_size_v<decltype(v3)> << "\n";
variant<int, unsigned int, long long, double, std::string> v4((int)114514);
std::cout << get_n_impl<0, decltype(v4.data_)>::get(v4.data_) << " " << get_n_impl<1, decltype(v4.data_)>::get(v4.data_) << " "
<< get_n_impl<2, decltype(v4.data_)>::get(v4.data_) << " " << get_n_impl<3, decltype(v4.data_)>::get(v4.data_) << " "
<< get_n_impl<4, decltype(v4.data_)>::get(v4.data_) << "\n";
std::cout << get<0>(v4) << " " << get<1>(v4) << " " << get<2>(v4) << " " << get<3>(v4) << " " << get<4>(v4) << "\n";
std::cout << get_type_impl<int, decltype(v4.data_)>::get(v4.data_) << " " << get_type_impl<unsigned int, decltype(v4.data_)>::get(v4.data_) << " "
<< get_type_impl<long long, decltype(v4.data_)>::get(v4.data_) << " " << get_type_impl<double, decltype(v4.data_)>::get(v4.data_) << " "
<< get_type_impl<std::string, decltype(v4.data_)>::get(v4.data_) << "\n";
std::cout << get<int>(v4) << " " << get<unsigned int>(v4) << " " << get<long long>(v4) << " " << get<double>(v4) << " " << get<std::string>(v4) << "\n";
int int1 = 1;
const int int2 = 1;
int &int3 = int1;
std::cout << variant<int, float, std::string>().type_ << " "
<< variant<int, float, std::string>(int1).type_ << " "
<< variant<int, float, std::string>(int2).type_ << " "
<< variant<int, float, std::string>(int3).type_ << " "
<< variant<int, float, std::string>(1.1f).type_ << " "
<< variant<int, float, std::string>(std::string("lifehappy")).type_ << "\n";
struct Test1 {
~ Test1() {
std::cout << "~ Test1()\n";
}
}ta;
struct Test2 {
~ Test2() {
std::cout << "~ Test2()\n";
}
}tb;
variant<int, long long, Test1, Test2> variant_test(ta);
std::cout << "OK\n";
variant_test = tb;
std::cout << "OK\n";
return 0;
}