无穷级数例子

计算 lim ⁡ x → ∞ ( 1 n + 1 + 1 n + 2 + 1 n + 3 + . . . + 1 n + 2 n − 1 + 1 n + 2 n ) 计算\lim _{x\to \infty} (\frac{1}{n+1} + \frac{1}{n+2}+\frac{1}{n+3} + ...+ \frac{1}{n+2n-1} + \frac{1}{n+2n} ) 计算xlim(n+11+n+21+n+31+...+n+2n11+n+2n1)

解:

lim ⁡ x → ∞ ( 1 n + 1 + 1 n + 2 + 1 n + 3 + . . . + 1 n + 2 n − 1 + 1 n + 2 n ) = lim ⁡ x → ∞ 1 2 n ( 1 1 2 + 1 2 n + 1 1 2 + 2 2 n + 1 1 2 + 3 2 n + . . . + 1 1 2 + 2 n − 1 2 n + 1 1 2 + 2 n 2 n ) = ∫ o 1 1 1 2 + x d x = ln ⁡ ( 1 / 2 + x ) ∣ 0 1 = ln ⁡ 3 − ln ⁡ 2 − ln ⁡ 1 + ln ⁡ 2 = ln ⁡ 3 \lim _{x\to \infty} (\frac{1}{n+1} + \frac{1}{n+2}+\frac{1}{n+3} + ...+ \frac{1}{n+2n-1} + \frac{1}{n+2n} )=\\ \lim _{x\to \infty} \frac{1}{2n}(\frac{1}{\frac{1}{2}+\frac{1}{2n}} + \frac{1}{\frac{1}{2}+\frac{2}{2n}}+\frac{1}{\frac{1}{2}+\frac{3}{2n}} + ...+ \frac{1}{\frac{1}{2}+\frac{2n-1}{2n}} + \frac{1}{\frac{1}{2}+\frac{2n}{2n}} )=\\ \int_o^1 \frac{1}{\frac{1}{2}+ x} dx = \ln(1/2+x)|_0^1 = \ln3 - \ln2 -\ln1 + \ln2 = \ln3 xlim(n+11+n+21+n+31+...+n+2n11+n+2n1)=xlim2n1(21+2n11+21+2n21+21+2n31+...+21+2n2n11+21+2n2n1)=o121+x1dx=ln(1/2+x)01=ln3ln2ln1+ln2=ln3

以下做法错在哪里?

lim ⁡ x → ∞ ( 1 n + 1 + 1 n + 2 + 1 n + 3 + . . . + 1 n + 2 n − 1 + 1 n + 2 n ) = lim ⁡ x → ∞ 2 1 2 n ( 1 1 + 1 n + 1 1 + 2 n + 1 1 + 3 n + . . . + 1 1 + 2 n − 1 n + 1 1 + 2 n n ) = 2 ∫ o 2 1 1 + x d x = 2 ln ⁡ ( 1 + x ) ∣ 0 2 = 2 ln ⁡ 3 \lim _{x\to \infty} (\frac{1}{n+1} + \frac{1}{n+2}+\frac{1}{n+3} + ...+ \frac{1}{n+2n-1} + \frac{1}{n+2n} )=\\ \lim _{x\to \infty}2 \frac{1}{2n}(\frac{1}{1+\frac{1}{n}} + \frac{1}{1+\frac{2}{n}}+\frac{1}{1+\frac{3}{n}} + ...+ \frac{1}{1+\frac{2n-1}{n}} + \frac{1}{1+\frac{2n}{n}} )=\\ 2\int_o^2 \frac{1}{1+ x} dx = 2\ln(1+x)|_0^2= 2 \ln3 xlim(n+11+n+21+n+31+...+n+2n11+n+2n1)=xlim22n1(1+n11+1+n21+1+n31+...+1+n2n11+1+n2n1)=2o21+x1dx=2ln(1+x)02=2ln3

你可能感兴趣的:(数学,高等数学,学习)