函数式编程 - 尾调用

一. 什么是尾调用?

尾调用(Tail Call)是函数式编程的一个重要概念,本身非常简单,一句话就能说清楚,就是指某个函数的最后一步是调用另一个函数。

function f(x) {
    return g(x);
}

上面代码中,函数f的最后一步是调用函数g,这就叫尾调用。

以下三种情况,都不属于尾调用。

// 情况一
function f(x){
  let y = g(x);
  return y;
}

// 情况二
function f(x){
  return g(x) + 1;
}

// 情况三
function f(x){
  g(x);
}
  • 情况一是调用函数g之后,还有赋值操作,所以不属于尾调用,即使语义完全一样。
  • 情况二也属于调用后还有操作,即便是写在一行内。
  • 情况三也属于调用后还有操作,函数内没有显示的写 return 语句时,会隐式添加 return undefined 。情况三等同于以下代码。
function f(x) {
    g(x);
  return undefined;
}

尾调用不一定出现在函数尾部,只要是最后一步操作即可。

function f(x) {
  if (x > 0) {
    return m(x)
  }
  return n(x);
}

上面代码中,函数mn都属于尾调用,因为它们都是函数f的最后一步操作。

总结:

  1. 尾调用不访问当前栈帧的变量(也就是说函数不是一个闭包)
  2. 在函数内部,尾调用是最后一条语句
  3. 尾调用的结果作为函数值返回

同时满足以上三个条件,就是尾调用,可以被js引擎自动优化。

二. 尾调用优化

尾调用之所以与其他调用不同,就在于它的特殊的调用位置。

函数调用会在内存形成一个“调用记录”,又称“调用帧”(call frame),保存调用位置和内部变量等信息。如果在函数A的内部调用函数B,那么在A的调用帧上方,还会形成一个B的调用帧。等到B运行结束,将结果返回到AB的调用帧才会消失。如果函数B内部还调用函数C,那就还有一个C的调用帧,以此类推。所有的调用帧,就形成一个“调用栈”(call stack)。

未命名文件 (1).png

尾调用由于是函数的最后一步操作,所以不需要保留外层函数的调用帧,因为调用位置、内部变量等信息都不会再用到了,只要直接用内层函数的调用帧,取代外层函数的调用帧就可以了。

function f() {
  let m = 1;
  let n = 2;
  return g(m + n);
}
f();

// 等同于
function f() {
  return g(3);
}
f();

// 等同于
g(3);

上面代码中,如果函数g不是尾调用,函数f就需要保存内部变量mn的值、g的调用位置等信息。但由于调用g之后,函数f就结束了,所以执行到最后一步,完全可以删除f(x)的调用帧,只保留g(3)的调用帧。

未命名文件 (3).png

这就叫做“尾调用优化”(Tail call optimization),即只保留内层函数的调用帧。如果所有函数都是尾调用,那么完全可以做到每次执行时,调用帧只有一项,这将大大节省内存。这就是“尾调用优化”的意义。

注意,只有不再用到外层函数的内部变量,内层函数的调用帧才会取代外层函数的调用帧,否则就无法进行“尾调用优化”。

function addOne(a){
  var one = 1;
  function inner(b){
    return b + one;
  }
  return inner(a);
}

上面的函数不会进行尾调用优化,因为内层函数inner用到了外层函数addOne的内部变量one

三. 尾递归

函数调用自身,称为递归。如果尾调用自身,就称为尾递归。

递归是非常耗费内存的,因为需要同时保存成千上百个调用帧,很容易发生“栈溢出”错误(stack overflow)。

但对于尾递归来说,由于只存在一个调用帧,所以永远不会发生“栈溢出”错误。

function factorial(n) {
  if (n === 1) return 1;
  return n * factorial(n - 1);
}

factorial(5) // 120

上面代码是一个阶乘函数,计算n的阶乘,最多需要保存n个调用记录,复杂度 O(n) 。上面代码的调用帧如下所示

未命名文件 (4).png

如果改写成尾递归,只保留一个调用记录,复杂度 O(1) 。

function factorial(n, total) {
  if (n === 1) return total;
  return factorial(n - 1, n * total);
}

factorial(5, 1) // 120

还有一个比较著名的例子,就是计算斐波那契数列,也能充分说明尾递归优化的重要性。

非尾递归的斐波那契数列实现如下。

function fibonacci (n) {
  if (n <= 1) return 1;

  return fibonacci(n - 1) + fibonacci(n - 2);
}

fibonacci(10) // 89
fibonacci(100) // 超时
fibonacci(500) // 超时

尾递归优化过的斐波那契数列实现如下。

function fibonacci2 (n , ac1 = 1 , ac2 = 1) {
  if(n <= 1) return ac2;

  return fibonacci2 (n - 1, ac2, ac1 + ac2);
}

fibonacci2(100) // 573147844013817200000
fibonacci2(1000) // 7.0330367711422765e+208
fibonacci2(10000) // Infinity

由此可见,“尾调用优化”对递归操作意义重大,只要使用尾递归,就不会发生栈溢出(或者层层递归造成的超时),相对节省内存。

四. 递归函数的改写

尾递归的实现,往往需要改写递归函数,确保最后一步只调用自身。做到这一点的方法,就是把所有用到的内部变量改写成函数的参数。

比如上面的例子,阶乘函数 factorial 需要用到一个中间变量total,那就把这个中间变量改写成函数的参数。这样做的缺点就是不太直观,第一眼很难看出来,为什么计算5的阶乘,需要传入两个参数51

两个方法可以解决这个问题。方法一是在尾递归函数之外,再提供一个正常形式的函数。

// 尾递归阶乘函数
function tailFactorial(n, total) {
  if (n === 1) return total;
  return tailFactorial(n - 1, n * total);
}

// 阶乘函数
function factorial(n) {
  return tailFactorial(n, 1);
}

factorial(5) // 120

上面代码通过一个正常形式的阶乘函数factorial,调用尾递归函数tailFactorial,看起来就正常多了。

函数式编程有一个概念,叫做柯里化(currying),意思是将多参数的函数转换成单参数的形式。这里也可以使用柯里化。

function currying(fn, n) {
  return function (m) {
    return fn.call(this, m, n);
  };
}

function tailFactorial(n, total) {
  if (n === 1) return total;
  return tailFactorial(n - 1, n * total);
}

const factorial = currying(tailFactorial, 1);

factorial(5) // 120

上面代码通过柯里化,将尾递归函数tailFactorial变为只接受一个参数的factorial

另外也可以使用ES6的函数默认值

function factorial(n, total = 1) {
  if (n === 1) return total;
  return factorial(n - 1, n * total);
}

factorial(5) // 120

上面代码中,参数total有默认值1,所以调用时不用提供这个值。

总结一下,递归本质上是一种循环操作。纯粹的函数式编程语言没有循环操作命令,所有的循环都用递归实现,这就是为什么尾递归对这些语言极其重要。

对于其他支持“尾调用优化”的语言(比如 Lua,ES6),只需要知道循环可以用递归代替,而一旦使用递归,就最好使用尾递归。

五. 尾递归优化的实现

尾递归之所以需要优化,原因是调用栈太多,造成溢出,那么只要减少调用栈,就不会溢出。怎么做可以减少调用栈呢?就是采用“循环”换掉“递归”。

function sum(x, y) {
  if (y > 0) {
    return sum(x + 1, y - 1);
  } else {
    return x;
  }
}

sum(1, 100000)
// Uncaught RangeError: Maximum call stack size exceeded(…)

上面代码中,sum是一个递归函数,参数x是需要累加的值,参数y控制递归次数。一旦指定sum递归 100000 次,就会报错,提示超出调用栈的最大次数。

蹦床函数(trampoline)可以将递归执行转为循环执行。

function trampoline(f) {
  while (f && f instanceof Function) {
    f = f();
  }
  return f;
}

上面就是蹦床函数的一个实现,它接受一个函数f作为参数。只要f执行后返回一个函数,就继续执行。

注意,这里是返回一个函数,然后执行该函数,而不是函数里面调用函数,这样就避免了递归执行,从而就消除了调用栈过大的问题。

然后,要做的就是将原来的递归函数,改写为每一步返回另一个函数。

function sum(x, y) {
  if (y > 0) {
    return sum.bind(null, x + 1, y - 1);
  } else {
    return x;
  }
}

上面代码中,sum函数只要 y > 0,就会返回自身的另一个版本。

现在,使用蹦床函数执行sum,就不会发生调用栈溢出。

trampoline(sum(1, 100000))
// 100001

事实上蹦床函数并不是真正的尾递归优化,下面的实现才是。

// 尾递归优化的实现
function tco(f) {
  var value; // 最终返回的结果
  var active = false; // 是否激活
  var accumulated = []; // 存参

  return function accumulator() {
    accumulated.push(arguments);
    if (!active) {
      active = true;
      while (accumulated.length) {
        value = f.apply(this, accumulated.shift());
      }
      active = false;
      return value;
    }
  };
}

var sum = tco(function(x, y) {
  if (y > 0) {
    return sum(x + 1, y - 1)
  } else {
    return x
  }
});

sum(1, 100000)
// 100001

上面代码中,tco函数是尾递归优化的实现,它的奥妙就在于状态变量active。默认情况下,这个变量是不激活的。一旦进入尾递归优化的过程( accumulator 被调用时 ),这个变量就激活了。然后,每一轮递归sum返回的都是undefined,所以就避免了递归执行;而accumulated数组存放每一轮sum执行的参数,总是有值的,这就保证了accumulator函数内部的while循环总是会执行。这样就很巧妙地将“递归”改成了“循环”,而后一轮的参数会取代前一轮的参数,保证了调用栈只有一层。

你可能感兴趣的:(函数式编程 - 尾调用)