“回文”是指正读反读都能读通的句子,它是古今中外都有的一种修辞方式和文字游戏,如“我为人人,人人为我”等。在数学中也有这样一类数字有这样的特征,成为回文数(palindrome number)。[1]
设n是一任意自然数。若将n的各位数字反向排列所得自然数n1与n相等,则称n为一回文数。例如,若n=1234321,则称n为一回文数;但若n=1234567,则n不是回文数。[1]
注意:
1.偶数个的数字也有回文数124421
2.小数没有回文数
中文名
回文数外文名
palindrome number
定 义
正读倒读都一样的整数
回文数基本情况
回文数1千以内的回文数
在自然数中,最小的回文数是0,其次是1,2,3,4,5,6,7,8,9,11,22,33,44,55,66,77,88,99,101,111,121,131,141,151,161,171,181,191,202,212,222,232,242,252,262,272,282,292,303,313,323,333,343,353,363,373,383,393,404,414,424,434,444,454,464,474,484,494,505,515,525,535,545,555,565,575,585,595,606,616,626,636,646,656,666,676,686,696,707,717,727,737,747,757,767,777,787,797,808,818,828,838,848,858,868,878,888,898,909,919,929,939,949,959,969,979,989,999.
回文数平方回数
定义:一个回文数,它同时还是某一个数的平方,这样的数字叫做平方回数。例如:121。
100以上至1000以内的平方回数只有3个,分别是:121、484、676。
其中,121是11的平方。
484是22的平方,同时还是121的4倍。
676是26的平方,同时还是169的4倍。
回文数举例说明
任意某一个数通过以下方式相加也可得到
如:29+92=121 还有 194+491=685,586+685=1271,1271+1721=2992
不过很多数还没有发现此类特征(比如196,下面会讲到)
另外个别平方数是回文数
1的平方=1
11的平方=121
111的平方=12321
1111的平方=1234321
……
……
依次类推
3×51=153
6×21=126
4307×62=267034
9×7×533=