10000内的回文数c语言,回文数

“回文”是指正读反读都能读通的句子,它是古今中外都有的一种修辞方式和文字游戏,如“我为人人,人人为我”等。在数学中也有这样一类数字有这样的特征,成为回文数(palindrome number)。[1]

设n是一任意自然数。若将n的各位数字反向排列所得自然数n1与n相等,则称n为一回文数。例如,若n=1234321,则称n为一回文数;但若n=1234567,则n不是回文数。[1]

注意:

1.偶数个的数字也有回文数124421

2.小数没有回文数

中文名

回文数外文名

palindrome number

定    义

正读倒读都一样的整数

回文数基本情况

回文数1千以内的回文数

在自然数中,最小的回文数是0,其次是1,2,3,4,5,6,7,8,9,11,22,33,44,55,66,77,88,99,101,111,121,131,141,151,161,171,181,191,202,212,222,232,242,252,262,272,282,292,303,313,323,333,343,353,363,373,383,393,404,414,424,434,444,454,464,474,484,494,505,515,525,535,545,555,565,575,585,595,606,616,626,636,646,656,666,676,686,696,707,717,727,737,747,757,767,777,787,797,808,818,828,838,848,858,868,878,888,898,909,919,929,939,949,959,969,979,989,999.

回文数平方回数

定义:一个回文数,它同时还是某一个数的平方,这样的数字叫做平方回数。例如:121。

100以上至1000以内的平方回数只有3个,分别是:121、484、676。

其中,121是11的平方。

484是22的平方,同时还是121的4倍。

676是26的平方,同时还是169的4倍。

回文数举例说明

任意某一个数通过以下方式相加也可得到

如:29+92=121 还有 194+491=685,586+685=1271,1271+1721=2992

不过很多数还没有发现此类特征(比如196,下面会讲到)

另外个别平方数是回文数

1的平方=1

11的平方=121

111的平方=12321

1111的平方=1234321

……

……

依次类推

3×51=153

6×21=126

4307×62=267034

9×7×533=

你可能感兴趣的:(10000内的回文数c语言)