- 新浪财经App喜娜AI助手通过大模型登记,已上线AI摘要和个股公告AI解读
量子位
3月14日,官方发布的信息显示,新浪财经App喜娜AI助手近日已通过北京市生成式人工智能服务登记。目前,喜娜AI助手已上线两项创新功能:喜娜AI摘要和个股公告AI解读。这两项功能旨在通过先进的人工智能技术,提升用户对财经资讯和上市公司公告的理解与分析效率,这标志着AI技术在信息服务领域的又一重大突破。喜娜AI摘要:快速提炼财经资讯核心要点AI时代,资讯信息迎来爆炸性增长,用户每天都要面对海量资讯,
- 书籍-《动手学深度学习(英文版)》
书籍:DiveintoDeepLearning作者:AstonZhang,ZacharyC.Lipton,MuLi,AlexanderJ.Smola出版:CambridgeUniversityPress编辑:陈萍萍的公主@一点人工一点智能下载:书籍下载-《动手学深度学习(英文版)》01书籍介绍深度学习已经彻底改变了模式识别,为计算机视觉、自然语言处理和自动语音识别等领域提供了强大的工具。应用深度学
- 向量数据库 PieCloudVector 进阶系列丨打造以 LLM 为基础的聊天机器人
本系列前两篇文章深入探讨了PieCloudVector在图片和音频数据上的应用之后,本文将聚焦于文本数据,探索PieCloudVector对于文本数据的向量化处理、存储以及检索,并最终结合LLM打造聊天机器人的全流程。在自然语言处理任务中涉及到大量对文本数据的处理、分析和理解,而向量数据库在其中发挥了重要的作用。本文为《PieCloudVector进阶系列》的第三篇,将为大家介绍如何利用PieCl
- 模型微调:让AI更懂你的魔法棒
带上一无所知的我
pytorch人工智能python
模型微调:让AI更懂你的魔法棒✨在人工智能的世界里,模型微调(Fine-tuning)就像是一位魔法师用魔法棒对预训练模型进行“个性化改造”,让它更适应特定的任务。今天,我们就来深入探讨模型微调的技术细节,让你也能像魔法师一样,轻松驾驭AI模型!什么是模型微调?模型微调是指在预训练模型的基础上,通过少量的特定任务数据进行训练,使模型更好地适应新任务的技术。预训练模型通常是基于大规模数据集(如Ima
- 【十 自然语言处理项目实战】【10.2 数据收集与预处理】
再见孙悟空_
#自然语言处理人工智能知识图谱transformer自然语言处理数据收集自然语言处理预处理自然语言处理项目
各位在数据泥潭里打滚的勇士们,今天咱们要聊的这个话题,就像学做川菜必须掌握的"火锅底料炒制法"——数据收集与预处理!这玩意儿看着像脏活累活,实则是决定你模型上限的生死关卡。作为一个曾把BERT训成人工智障的老司机,这就把五年掉坑经验熬成一锅十全大补汤!(戴上橡胶手套准备掏数据)一、数据收集的野路子:比盗墓还刺激的冒险1.1公开数据集寻宝图(附藏宝坐标)①正道的光:Kaggle(数据界的沃尔玛):搜
- 从 DeepSeek 到 AI 工具箱:Websoft9 应用托管平台赋能高校教学与科研
人工智能deepseek
从DeepSeek到AI工具箱:Websoft9应用托管平台赋能高校教学与科研人工智能技术的快速发展正在重塑高校的教学与科研生态。从智能教学辅助到跨学科研究,AI工具的应用场景不断扩展,而技术落地的复杂性也带来新的挑战。在这一背景下,如何将大模型能力与多样化AI工具无缝整合,构建安全、易用的科研教学环境,成为高校数字化转型的关键命题。一、高校智能化转型的三大痛点技术门槛高•AI工具部署依赖专业运维
- 聊聊关于Python与人工智能那些事
小G-biu-
python人工智能tensorflow
Python与人工智能:介绍Python在人工智能方面的应用Python是一种广泛使用的编程语言,也是人工智能领域中最受欢迎的语言之一。Python提供了许多用于构建和训练人工智能模型的库和框架。本文将介绍一些常见的人工智能技术以及Python在这些技术中的应用。OpenAIOpenAI是一个非营利组织,旨在推动人工智能的发展并促进其对人类的利益。OpenAI通过开发人工智能技术、研究人工智能的影
- 当现代教育技术遇上仓颉---探秘华为仓颉编程语言与未来教育技术的接轨
想成为高手499
华为服务器php
引言随着人工智能、物联网、区块链等新兴技术的发展,编程语言的需求也在不断演化。据市场研究机构发布的数据显示,全球编程语言市场规模预计在未来五年内将以每年10%的速度增长。此外,越来越多的企业和高校正在积极推动基于分布式系统和硬件优化的新型语言开发,这进一步表明对高性能编程语言的需求日益旺盛。近年来,华为推出了自研编程语言“仓颉”,以其高效的语法设计、灵活的语义表达能力和强大的跨平台适配性能引发了编
- Python在人工智能与机器人开发中的应用与实践
一键难忘
python人工智能机器人
Python在人工智能与机器人开发中的应用与实践Python已经成为人工智能和机器人开发的主要编程语言之一,凭借其简洁的语法、强大的库支持和广泛的社区资源,Python为开发者提供了一个高效且易于学习的平台。在这篇文章中,我们将深入探讨如何使用Python进行人工智能(AI)和机器人开发,并通过实际代码示例展示核心技术和应用。1.Python在人工智能中的应用人工智能(AI)领域的核心任务包括机器
- 复旦:过程奖励优化多模态推理
大模型任我行
大模型-模型训练人工智能自然语言处理语言模型论文笔记
标题:VisualPRM:AnEffectiveProcessRewardModelforMultimodalReasoning来源:arXiv,2503.10291摘要我们引入了VisualPRM,这是一种具有8B参数的高级多模态过程奖励模型(PRM),它通过Best-of-N(BoN)评估策略提高了现有多模态大型语言模型(MLLM)在不同模型尺度和族之间的推理能力。具体来说,我们的模型提高了三
- 智慧交通是什么,可以帮助我们解决什么问题?
Guheyunyi
运维大数据人工智能信息可视化前端
智慧交通是什么?智慧交通(SmartTransportation)是指利用物联网(IoT)、大数据、人工智能(AI)、云计算、5G通信等先进技术,对交通系统进行智能化管理和优化,以提高交通效率、减少拥堵、降低事故率、提升出行体验,并实现交通资源的合理配置和可持续发展。智慧交通的核心是通过数据采集、分析和应用,实现交通系统的智能化、自动化和协同化,从而构建一个高效、安全、绿色、便捷的交通生态系统。智
- 实战LLM强化学习——使用GRPO(DeepSeek R1出圈算法)
大富大贵7
程序员知识储备1程序员知识储备2程序员知识储备3经验分享
引言近年来,深度强化学习(DRL)已经成为解决复杂决策问题的一个强有力工具,尤其是在自然语言处理(NLP)领域的广泛应用。通过不断优化决策策略,DRL能在大量数据中学习最佳行为,尤其是大型语言模型(LLM)在任务中展现出的巨大潜力。然而,随着模型规模的扩大和任务复杂性的增加,传统的强化学习算法开始暴露出训练效率低、收敛速度慢等问题。为了解决这些挑战,DeepSeek公司提出了一个新的强化学习算法—
- AI学习指南RAG篇(24)-RAGFlow的社区与开源贡献
俞兆鹏
AI学习指南人工智能
一、引言RAGFlow是一款基于深度文档理解的开源RAG(Retrieval-AugmentedGeneration,检索增强生成)引擎,旨在解决现有RAG技术在数据处理和生成答案方面的挑战。RAGFlow通过结合大型语言模型(LLMs)的强大生成能力和高效的信息检索系统,为用户提供了一种全新的交互体验。本文将鼓励读者参与到RAGFlow的开源社区中,共同推动技术的发展和创新。二、RAGFlow的
- 在线视频创作平台(Vidnami)
deepdata_cn
视频生成视频剪辑视频创作
Vidnami是一款功能强大的在线视频创作平台,前身为ContentSamurai,于2015年推出,2020年更名为Vidnami。它运用人工智能技术,能够分析输入的文本,自动从大量素材中选取合适的图像和视频片段,将文字快速转化为具有专业外观的视频,无需用户具备视频编辑经验。该平台提供多种视频模板、全主题定制功能以及内置的免版权媒体库,包括3000万张图片和3万首音乐,还支持自动配音,用户可以录
- OpenCV第1课OpenCV 介绍及其树莓派下环境的搭建
嵌入式老牛
树莓派之OpenCVopencv人工智能计算机视觉
1.机器是如何“看”的我们人类可以通过眼睛看到五颜六色的世界,是因为人眼的视觉细胞中存在分别对红、绿、蓝敏感的3种细胞。其中的光感色素根据光线的不同进行不同比例的分解,从而让我们识别到各种颜色。对人工智能而言,学会“看”也是非常关键的一步。那么机器人是如何看到这个世界的呢?这就涉及到人工智能方向重要的分支--机器视觉。机器视觉即用机器人代替人眼来做测量和判断,通过机器视觉产品(即图像摄取装置,分C
- 有了大模型为何还需要Agent智能体
全栈你个大西瓜
人工智能人工智能AIAgentAgent智能体Agent原理
一、什么是Agent?Agent(智能体)是一种能感知环境、自主决策、执行动作的智能实体,当它与大语言模型(如通义千问QWen、GPT)结合时,形成一种**“增强型AI系统”**。其核心架构如下:大脑(LLM):负责语言理解、逻辑推理、知识问答等认知任务。感官(工具链):通过API、传感器或数据库获取实时数据(如天气、股价)。手脚(执行器):调用外部工具完成任务(如发送邮件、控制智能家居)。记忆(
- Linux安装Anaconda和Jupyter
硬水果糖
人工智能Linuxlinuxjupyter运维
一、了解Anaconda和Jupyter引言:Anaconda是一个流行的开源数据科学平台,广泛用于数据分析、机器学习、人工智能等领域。它是一个集成了大量科学计算和数据科学工具的Python和R编程语言环境。Anaconda的主要目标是简化数据科学和机器学习的开发流程,提供一个易于安装和管理的环境。而预装了大量常用的Python和R库,这些库涵盖了数据科学的各个方面,包括:数据分析:Pandas、
- DeepSeek智能政务大脑:城市服务知识库构建全指南——从RAG架构到民生场景落地实践
Coderabo
DeepSeekR1模型企业级应用政务架构
DeepSeek赋能城市智慧升级:基于RAG架构的市民服务智能知识库构建全解一、需求分析与技术选型1.1市民服务场景需求市民服务智能知识库需要解决政务咨询效率低下、专业术语难理解、多轮对话能力弱等核心问题。系统需具备:自然语言理解能力(NLU)异构知识整合能力政策法规精准解读能力多轮对话上下文管理应急服务联动机制1.2DeepSeek技术栈选择基于DeepSeek-Large语言模型构建核心系统,
- deepseek具体应用场景
ahyouxiang
人工智能
DeepSeek的具体应用场景非常广泛,涵盖了多个领域和行业。以下是基于证据的详细总结:金融领域DeepSeek在金融领域的应用表现突出,例如通过其大语言模型(如DeepSeekLLM67Bt)提供数学、逻辑推理等能力,帮助金融机构提升服务效率。此外,DeepSeek还被应用于智能安全体产品中,通过安全大模型实现个性化开发和优化。医疗领域在医疗领域,DeepSeek的技术被用于辅助诊断和患者记录管
- DeepSeek 大模型落地成都高新区:科技赋能警务的创新变革
AGI大模型学习
科技人工智能DeepSeek大模型chatgpt大模型应用AI大模型
在科技飞速发展的当下,人工智能正以前所未有的速度融入各个领域,深刻改变着人们的生活与工作方式。公安领域也不例外,积极拥抱科技创新,成为提升警务效能、维护社会稳定的关键路径。全国第一例警用DeepSeek大模型落地成都高新区,这一突破性举措在警务智能化发展进程中具有里程碑意义,为公安工作带来了全方位的革新。一、警用DeepSeek大模型落地的时代背景近年来,国产AI蓬勃发展,不断涌现出令人瞩目的成果
- 五、AIGC大模型_09手动实现ReAct_Agent
学不会lostfound
AI人工智能react_agentLangGraphMulti-AgentPlanAndExecuteAIGC
0、前言在上一章节中,我们了解到:create_react_agent是LangGraph提供的一个预构建方法(fromlanggraph.prebuiltimportcreate_react_agent),它可以将语言模型(LLM)和一组工具(Tools)结合起来,创建一个能够根据用户输入自动调用工具的智能代理,这个代理可以根据用户的请求,决定是否需要调用某个工具,并将工具的输出反馈给用户这个函
- agent实现:通过prompt方式实现agent自定义使用
loong_XL
深度学习大模型AIpromptagent打磨下大模型
参看:https://github.com/TommyZihao/openvino_tonypihttps://github.com/QwenLM/Qwen/blob/main/examples/react_prompt.md(思想类似react)通过prompt形式,基本任何llm模型都可以使用来自定义agent,不用只能那些支持functioncall的大模型的,更灵活自由prompt案例:比
- 大数据和人工智能概念全面解析
就犯得上方法
一、大数据和人工智能大数据是伴随着信息数据爆炸式增长和网络计算技术迅速发展而兴起的一个新型概念。根据麦肯锡全球研究所的定义,大数据是一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。大数据能够帮助各行各业的企业从原本毫无价值的海量数据中挖掘出用户的需求,使数据能够从量变到质变,真正产生价值
- 理解并使用基于n-gram重叠的示例选择器
shuoac
easyui前端javascriptpython
在AI及自然语言处理任务中,选择与输入最相似的示例可以显著提升生成的质量和上下文相关性。本文将介绍如何使用NGramOverlapExampleSelector工具,通过n-gram重叠来筛选和排序示例,从而帮助实现这一目标。技术背景介绍n-gram重叠技术通过比较输入文本与示例文本在字符或词组上的相似度,计算一个介于0到1之间的分数来表示相似度。这个分数越高,表示文本间的重叠越大。NGramOv
- DeepSeek爆火,背后模型竟藏着这些秘密!
qq_23519469
ai
DeepSeek是什么来头最近,AI圈可是被一个名字刷爆了屏,那就是DeepSeek!它就像一颗横空出世的超级新星,在全球范围掀起了一阵狂热的追捧潮,这热度,简直了!大家都在疯狂讨论它,各种测评、对比层出不穷。它到底有啥过人之处,能让这么多人都为之疯狂?今天咱就来好好唠唠。DeepSeek,全称杭州深度求索人工智能基础技术研究有限公司,是一家专注于开发先进大语言模型(LLM)和相关技术的企业。它成
- Ai时代初期全球不同纬度的层级辐射现象
龙胥伯
人工智能
基于最新研究成果与行业动态,AI时代的"层级辐射"现象可被科学解构为以下六大维度,结合技术演进、产业实践和社会影响进行系统性分析:一、技术能力的层级跃迁模型效率革命DeepSeek研发的R1-Zero模型通过动态架构设计,将样本利用率提升40%以上,训练周期大幅缩短。这种技术突破推动AI从实验室走向规模化应用,在智能制造、生物医药等领域催生新生态。大语言模型的训练方式(预训练→多任务学习→强化学习
- 自定义Retriever的实现方法
vaidfl
windowslinuxmicrosoftpython
技术背景介绍在许多大语言模型(LLM)应用中,检索器(Retriever)用于从外部数据源获取信息。检索器的任务是根据用户查询检索相关的文档,这些文档通常被格式化为提示,供LLM使用,从而生成适当的响应,例如,根据知识库回答用户问题。核心原理解析要实现自定义的检索器,需要继承BaseRetriever类,并实现以下方法:_get_relevant_documents:获取与查询相关的文档,必需实现
- 如何缓存聊天模型响应以提高效率
scaFHIO
缓存javaoraclepython
技术背景介绍在开发基于大型语言模型(LLM)的应用程序时,API调用的成本和响应速度是需要考虑的两个重要因素。尤其是在开发过程中,重复请求相同的文本生成可能会增加额外的成本和延迟。为了应对这一挑战,LangChain提供了一种可选的缓存机制,可以有效地减少API调用次数,从而节省费用并加速应用程序响应。核心原理解析缓存机制的基本原理是在第一次请求时,将响应存储在缓存中。如果以后再次请求相同的输入,
- 如何在一行代码中初始化各种AI模型
qahaj
人工智能python深度学习
技术背景介绍在开发大语言模型(LLM)应用时,用户有时需要选择不同的模型提供商和具体模型。这通常需要一定的逻辑来根据用户配置初始化不同的聊天模型。为了简化这一过程,init_chat_model()方法被引入,让开发者能够轻松地初始化多种模型集成,而无需担心导入路径和类名。核心原理解析init_chat_model()方法通过传入模型名称及其提供商,自动推断并实例化对应的聊天模型。该功能在lang
- 使用Tiktoken进行文本分割:优化大语言模型的输入
bhawfgrcbtwny
语言模型python人工智能
引言在处理大语言模型时,因其对输入的token数量有限制,文本分割成为一个至关重要的任务。为了确保生成的文本块不会超过模型的token限制,我们需要使用与模型相同的tokenizer来计数和分割文本。在本文中,我们将探讨如何使用Tiktoken和其他工具来实现有效的文本分割。主要内容1.Tiktoken介绍Tiktoken是由OpenAI创建的一个快速BPE(BytePairEncoding)to
- web报表工具FineReport常见的数据集报错错误代码和解释
老A不折腾
web报表finereport代码可视化工具
在使用finereport制作报表,若预览发生错误,很多朋友便手忙脚乱不知所措了,其实没什么,只要看懂报错代码和含义,可以很快的排除错误,这里我就分享一下finereport的数据集报错错误代码和解释,如果有说的不准确的地方,也请各位小伙伴纠正一下。
NS-war-remote=错误代码\:1117 压缩部署不支持远程设计
NS_LayerReport_MultiDs=错误代码
- Java的WeakReference与WeakHashMap
bylijinnan
java弱引用
首先看看 WeakReference
wiki 上 Weak reference 的一个例子:
public class ReferenceTest {
public static void main(String[] args) throws InterruptedException {
WeakReference r = new Wea
- Linux——(hostname)主机名与ip的映射
eksliang
linuxhostname
一、 什么是主机名
无论在局域网还是INTERNET上,每台主机都有一个IP地址,是为了区分此台主机和彼台主机,也就是说IP地址就是主机的门牌号。但IP地址不方便记忆,所以又有了域名。域名只是在公网(INtERNET)中存在,每个域名都对应一个IP地址,但一个IP地址可有对应多个域名。域名类型 linuxsir.org 这样的;
主机名是用于什么的呢?
答:在一个局域网中,每台机器都有一个主
- oracle 常用技巧
18289753290
oracle常用技巧 ①复制表结构和数据 create table temp_clientloginUser as select distinct userid from tbusrtloginlog ②仅复制数据 如果表结构一样 insert into mytable select * &nb
- 使用c3p0数据库连接池时出现com.mchange.v2.resourcepool.TimeoutException
酷的飞上天空
exception
有一个线上环境使用的是c3p0数据库,为外部提供接口服务。最近访问压力增大后台tomcat的日志里面频繁出现
com.mchange.v2.resourcepool.TimeoutException: A client timed out while waiting to acquire a resource from com.mchange.v2.resourcepool.BasicResou
- IT系统分析师如何学习大数据
蓝儿唯美
大数据
我是一名从事大数据项目的IT系统分析师。在深入这个项目前需要了解些什么呢?学习大数据的最佳方法就是先从了解信息系统是如何工作着手,尤其是数据库和基础设施。同样在开始前还需要了解大数据工具,如Cloudera、Hadoop、Spark、Hive、Pig、Flume、Sqoop与Mesos。系 统分析师需要明白如何组织、管理和保护数据。在市面上有几十款数据管理产品可以用于管理数据。你的大数据数据库可能
- spring学习——简介
a-john
spring
Spring是一个开源框架,是为了解决企业应用开发的复杂性而创建的。Spring使用基本的JavaBean来完成以前只能由EJB完成的事情。然而Spring的用途不仅限于服务器端的开发,从简单性,可测试性和松耦合的角度而言,任何Java应用都可以从Spring中受益。其主要特征是依赖注入、AOP、持久化、事务、SpringMVC以及Acegi Security
为了降低Java开发的复杂性,
- 自定义颜色的xml文件
aijuans
xml
<?xml version="1.0" encoding="utf-8"?> <resources> <color name="white">#FFFFFF</color> <color name="black">#000000</color> &
- 运营到底是做什么的?
aoyouzi
运营到底是做什么的?
文章来源:夏叔叔(微信号:woshixiashushu),欢迎大家关注!很久没有动笔写点东西,近些日子,由于爱狗团产品上线,不断面试,经常会被问道一个问题。问:爱狗团的运营主要做什么?答:带着用户一起嗨。为什么是带着用户玩起来呢?究竟什么是运营?运营到底是做什么的?那么,我们先来回答一个更简单的问题——互联网公司对运营考核什么?以爱狗团为例,绝大部分的移动互联网公司,对运营部门的考核分为三块——用
- js面向对象类和对象
百合不是茶
js面向对象函数创建类和对象
接触js已经有几个月了,但是对js的面向对象的一些概念根本就是模糊的,js是一种面向对象的语言 但又不像java一样有class,js不是严格的面向对象语言 ,js在java web开发的地位和java不相上下 ,其中web的数据的反馈现在主流的使用json,json的语法和js的类和属性的创建相似
下面介绍一些js的类和对象的创建的技术
一:类和对
- web.xml之资源管理对象配置 resource-env-ref
bijian1013
javaweb.xmlservlet
resource-env-ref元素来指定对管理对象的servlet引用的声明,该对象与servlet环境中的资源相关联
<resource-env-ref>
<resource-env-ref-name>资源名</resource-env-ref-name>
<resource-env-ref-type>查找资源时返回的资源类
- Create a composite component with a custom namespace
sunjing
https://weblogs.java.net/blog/mriem/archive/2013/11/22/jsf-tip-45-create-composite-component-custom-namespace
When you developed a composite component the namespace you would be seeing would
- 【MongoDB学习笔记十二】Mongo副本集服务器角色之Arbiter
bit1129
mongodb
一、复本集为什么要加入Arbiter这个角色 回答这个问题,要从复本集的存活条件和Aribter服务器的特性两方面来说。 什么是Artiber? An arbiter does
not have a copy of data set and
cannot become a primary. Replica sets may have arbiters to add a
- Javascript开发笔记
白糖_
JavaScript
获取iframe内的元素
通常我们使用window.frames["frameId"].document.getElementById("divId").innerHTML这样的形式来获取iframe内的元素,这种写法在IE、safari、chrome下都是通过的,唯独在fireforx下不通过。其实jquery的contents方法提供了对if
- Web浏览器Chrome打开一段时间后,运行alert无效
bozch
Webchormealert无效
今天在开发的时候,突然间发现alert在chrome浏览器就没法弹出了,很是怪异。
试了试其他浏览器,发现都是没有问题的。
开始想以为是chorme浏览器有啥机制导致的,就开始尝试各种代码让alert出来。尝试结果是仍然没有显示出来。
这样开发的结果,如果客户在使用的时候没有提示,那会带来致命的体验。哎,没啥办法了 就关闭浏览器重启。
结果就好了,这也太怪异了。难道是cho
- 编程之美-高效地安排会议 图着色问题 贪心算法
bylijinnan
编程之美
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.Random;
public class GraphColoringProblem {
/**编程之美 高效地安排会议 图着色问题 贪心算法
* 假设要用很多个教室对一组
- 机器学习相关概念和开发工具
chenbowen00
算法matlab机器学习
基本概念:
机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。
它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。
开发工具
M
- [宇宙经济学]关于在太空建立永久定居点的可能性
comsci
经济
大家都知道,地球上的房地产都比较昂贵,而且土地证经常会因为新的政府的意志而变幻文本格式........
所以,在地球议会尚不具有在太空行使法律和权力的力量之前,我们外太阳系统的友好联盟可以考虑在地月系的某些引力平衡点上面,修建规模较大的定居点
- oracle 11g database control 证书错误
daizj
oracle证书错误oracle 11G 安装
oracle 11g database control 证书错误
win7 安装完oracle11后打开 Database control 后,会打开em管理页面,提示证书错误,点“继续浏览此网站”,还是会继续停留在证书错误页面
解决办法:
是 KB2661254 这个更新补丁引起的,它限制了 RSA 密钥位长度少于 1024 位的证书的使用。具体可以看微软官方公告:
- Java I/O之用FilenameFilter实现根据文件扩展名删除文件
游其是你
FilenameFilter
在Java中,你可以通过实现FilenameFilter类并重写accept(File dir, String name) 方法实现文件过滤功能。
在这个例子中,我们向你展示在“c:\\folder”路径下列出所有“.txt”格式的文件并删除。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
- C语言数组的简单以及一维数组的简单排序算法示例,二维数组简单示例
dcj3sjt126com
carray
# include <stdio.h>
int main(void)
{
int a[5] = {1, 2, 3, 4, 5};
//a 是数组的名字 5是表示数组元素的个数,并且这五个元素分别用a[0], a[1]...a[4]
int i;
for (i=0; i<5; ++i)
printf("%d\n",
- PRIMARY, INDEX, UNIQUE 这3种是一类 PRIMARY 主键。 就是 唯一 且 不能为空。 INDEX 索引,普通的 UNIQUE 唯一索引
dcj3sjt126com
primary
PRIMARY, INDEX, UNIQUE 这3种是一类PRIMARY 主键。 就是 唯一 且 不能为空。INDEX 索引,普通的UNIQUE 唯一索引。 不允许有重复。FULLTEXT 是全文索引,用于在一篇文章中,检索文本信息的。举个例子来说,比如你在为某商场做一个会员卡的系统。这个系统有一个会员表有下列字段:会员编号 INT会员姓名
- java集合辅助类 Collections、Arrays
shuizhaosi888
CollectionsArraysHashCode
Arrays、Collections
1 )数组集合之间转换
public static <T> List<T> asList(T... a) {
return new ArrayList<>(a);
}
a)Arrays.asL
- Spring Security(10)——退出登录logout
234390216
logoutSpring Security退出登录logout-urlLogoutFilter
要实现退出登录的功能我们需要在http元素下定义logout元素,这样Spring Security将自动为我们添加用于处理退出登录的过滤器LogoutFilter到FilterChain。当我们指定了http元素的auto-config属性为true时logout定义是会自动配置的,此时我们默认退出登录的URL为“/j_spring_secu
- 透过源码学前端 之 Backbone 三 Model
逐行分析JS源代码
backbone源码分析js学习
Backbone 分析第三部分 Model
概述: Model 提供了数据存储,将数据以JSON的形式保存在 Model的 attributes里,
但重点功能在于其提供了一套功能强大,使用简单的存、取、删、改数据方法,并在不同的操作里加了相应的监听事件,
如每次修改添加里都会触发 change,这在据模型变动来修改视图时很常用,并且与collection建立了关联。
- SpringMVC源码总结(七)mvc:annotation-driven中的HttpMessageConverter
乒乓狂魔
springMVC
这一篇文章主要介绍下HttpMessageConverter整个注册过程包含自定义的HttpMessageConverter,然后对一些HttpMessageConverter进行具体介绍。
HttpMessageConverter接口介绍:
public interface HttpMessageConverter<T> {
/**
* Indicate
- 分布式基础知识和算法理论
bluky999
算法zookeeper分布式一致性哈希paxos
分布式基础知识和算法理论
BY
[email protected]
本文永久链接:http://nodex.iteye.com/blog/2103218
在大数据的背景下,不管是做存储,做搜索,做数据分析,或者做产品或服务本身,面向互联网和移动互联网用户,已经不可避免地要面对分布式环境。笔者在此收录一些分布式相关的基础知识和算法理论介绍,在完善自我知识体系的同
- Android Studio的.gitignore以及gitignore无效的解决
bell0901
androidgitignore
github上.gitignore模板合集,里面有各种.gitignore : https://github.com/github/gitignore
自己用的Android Studio下项目的.gitignore文件,对github上的android.gitignore添加了
# OSX files //mac os下 .DS_Store
- 成为高级程序员的10个步骤
tomcat_oracle
编程
What
软件工程师的职业生涯要历经以下几个阶段:初级、中级,最后才是高级。这篇文章主要是讲如何通过 10 个步骤助你成为一名高级软件工程师。
Why
得到更多的报酬!因为你的薪水会随着你水平的提高而增加
提升你的职业生涯。成为了高级软件工程师之后,就可以朝着架构师、团队负责人、CTO 等职位前进
历经更大的挑战。随着你的成长,各种影响力也会提高。
- mongdb在linux下的安装
xtuhcy
mongodblinux
一、查询linux版本号:
lsb_release -a
LSB Version: :base-4.0-amd64:base-4.0-noarch:core-4.0-amd64:core-4.0-noarch:graphics-4.0-amd64:graphics-4.0-noarch:printing-4.0-amd64:printing-4.0-noa