concept:
相邻adjacent、领域neighborhood、度degree、
G =
If a graph has 5 vertices, can each vertex have degree 3?
Solution: This is not possible by the handshaking theorem, because the sum of the degrees of the vertices 3 * 5 = 15 is odd.
An undirected graph has an even number of vertices of odd degree
奇数度的vertice有偶数个
有向图中边的数目=点的出(入)度之和
∣ E ∣ = ∑ v ∈ V d e g − ( v ) = ∑ v ∈ V d e g + ( v ) |E|=\sum_{v\in V}deg^{-}(v) = \sum_{v\in V}deg^{+}(v) ∣E∣=∑v∈Vdeg−(v)=∑v∈Vdeg+(v)
A complete graph(完全图) on n vertices, denoted by Kn, is the simple graph that contains exactly one edge between each pair of distinct vertices.
A wheel(轮图) Wn is obtained by adding an additional vertex to a cycle Cn for n ≥ 3 and connecting this new vertex to each of the n vertices in Cn by new edges.也就是,在圈图的基础上加上一个顶点并且与其他点都有变相连。
G =
V可以划分为两个不相交的子集 V 1 和 V 2 V_1 和 V_2 V1和V2,并且E中每条边都连接了V1中的一个点和V2中的一个点。也就是说,E中没有边在V1或V2内部相连接
A complete bipartite graph(完全二部图) Km,n is a graph that has its vertex set partitioned into two subsets V1 of size m and V2 of size n such that there is an edge from every vertex in V1 to every vertex in V2.也就是说, ∀ a ∈ V 1 , ∀ b ∈ V 2 , 都 有 ∃ e ∈ E , 使 得 e c o n n e c t a a n d b \forall a\in V_1, \forall b\in V_2,都有\exist e\in E,使得 \ e\ connect\ a\ and\ b ∀a∈V1,∀b∈V2,都有∃e∈E,使得 e connect a and b
e.g…
Definition: A subgraph of a graph G = (V,E) is a graph (W,F), where W ⊂ V and F ⊂ E. A subgraph H of G is a proper subgraph of G if H ≠ G.
Let G = (V, E) be an undirected graph with vertices { v1, v2, … vn }and edges {e1, e2, … em}. The incidence matrix with respect to the ordering of V and E is the n × m matrix.也就是描述边和点的关系的矩阵 M = [ m i j ] M=[m_{ij}] M=[mij]
The simple graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if there is a one-to-one and onto function f from V1 to V2 with the property that a and b are adjacent in G1 if and only if f(a) and f(b) are adjacent in G2 , for all a and b in V1 . Such a function f is called an isomorphism. Two simple graphs that are not isomorphic are called nonisomorphic.
也就是说,在G1中a,b相连接,在G2中f(a)f(b)相连接,并且这种映射是one-to-one、Onto的(双射)。one-to-one correspondence = one-to-one and onto.
考虑度、边、点
**Definition:**Let n be a nonnegative integer and G an undirected graph. A path of length n from u to v in G is a sequence of n edges e1, … , en of G for which there exists a sequence x0 = u, x1, …, xn-1, xn = v of vertices such that ei has, for i = 1, …, n, the endpoints xi-1 and xi.
在熟人关系图中,两个人之间有一条路径如果有一个人链连接这些人,在链中相邻的两个人互相认识。在这张图中,有六个人连接Kamini和Chingss。
Definition: An undirected graph is called connected(连通的) if there is a path between every pair of vertices. An undirected graph that is not connected is called disconnected. We say that we disconnect a graph when we remove vertices or edges, or both, to produce a disconnected subgraph.也就是每对顶点间都是有通路的(直接相连或者间接相连)的。
Definition: A connected component(连通分支) of a graph G is a connected subgraph of G that is not a proper subgraph of another connected subgraph of G. A graph G that is not connected has two or more connected components that are disjoint and have G as their union. The number of connected component is usually denoted as p(G).也就是说,连通分支是最小的联通子图,并且对于一个不连通的图而言,必是由许多不相交的连通分支组成,称这些不相交的连通分支个数为p(G)
Definition: An undirected graph G=
, if there is a set V’⊂V, such that p(G-V’) > p(G), and for any V’’⊂V’, we have p(G-V’’) = p(G),then V’ is a vertex cut set of G. If V’ only includes one vertex v,then v is cut-vertex.也就是说,①G去掉 V’ 中的点之后,图的连通分支p增加[p(G-V’)>p(G)],②并且去掉V’中任意一个真子集都不会带来连通分支[p(G-V’’)=p(G)]的增加,则V’称为无向图中的一个点割集
Definition: An undirected graph G=
。If there eixts E’⊆E such that p(G-E’)>p(G) and for any E’’⊆E’ we have p(G-E’’) =p(G),then E’ is an edge cut set of G. If E’ only includes one edge e,the we call e is a cut edge or bridge.和点割集类似,删除一组边后破坏连通性,且这组边的真子集都不破坏连通性,把点->边,割点->桥。
Definition:G is an undirected graph. κ(G)=min{|V’||V’is a vertex cut set of G} is called the vertex connectivity of G. For Kn, we define κ(G)=n-1. For any disconnected graph, κ(G)=0. 也就是最小点割集所包含顶点数,并且记 K n = n − 1 K_n=n-1 Kn=n−1,因此Kn无点割集
使连通图G成为一个不连通图需要删除的点的最小数目,记为K,则图也可称作K-连通图
**Definition:**G is an undirected graph. λ(G)=min{|E’||E’is an edge cut set of G} is called the vertex connectivity of G. For Kn, we define λ(G)=n-1. For any disconnected graph, λ(G)=0. 也就是最小边割集所包含边数,并且记 K n = n − 1 K_n=n-1 Kn=n−1
使连通图G成为一个不连通图需要删去的边的最少数目,记为R,则图也可称作R边-连通图
1. 若 G 连 通 , E ′ 为 边 割 集 , 则 p ( G ′ − E ′ ) = 2 2. 若 G 连 通 , V ′ 为 点 割 集 , 则 p ( G ′ − V ′ ) ≥ 2 1.若G连通,E^{'}为边割集,则p\left (G^{'}-E^{'}\right ) = 2 \\ 2.若G连通,V^{'}为点割集,则p\left ( G^{'}-V^{'} \right )\geq 2 1.若G连通,E′为边割集,则p(G′−E′)=22.若G连通,V′为点割集,则p(G′−V′)≥2
Definition: A directed graph is strongly connected(强连通) if there is a path from a to b and a path from b to a whenever a and b are vertices in the graph. 也就是任意两个顶点a,b,既可以从a到b,又可以从b到a.
Definition: A directed graph is weakly connected (弱连通) if there is a path between every two vertices in the underlying undirected graph, which is the undirected graph obtained by ignoring the directions of the edges of the directed graph. 也就是把有向图的方向忽视后,任意两个点间都有path.
我们可以利用图的邻接矩阵来求图中两个顶点之间的路径数。
Theorem:
设G是一个图,其邻接矩阵a关于顶点的顺序为v1,…,vn(有向边或无向边,允许有多条边和循环)。 用 矩 阵 A r = ( i , j ) 表 示 , 其 中 a i , j 表 示 从 v i 到 v j 长 度 为 r 的 不 同 路 径 数 其 中 r > 0 是 一 个 正 整 数 . 如 下 图 A 3 中 a 1 , 1 = 2 表 示 从 v 1 到 v 1 且 长 度 为 3 的 路 径 数 目 为 2 用矩阵A^r=(i,j)表示,其中a_{i,j}表示从vi到vj长度为r的不同路径数其中r>0是一个正整数.如下图A^3中a_{1,1}=2表示从v1到v1且长度为3的路径数目为2 用矩阵Ar=(i,j)表示,其中ai,j表示从vi到vj长度为r的不同路径数其中r>0是一个正整数.如下图A3中a1,1=2表示从v1到v1且长度为3的路径数目为2
注意与矩阵的表示方式有所区别,不是从0开始。