c++中引入了右值引用
和移动语义
,可以避免无谓的复制,提高程序性能。有点难理解,于是花时间整理一下自己的理解。
左值、右值
C++
中所有的值都必然属于左值、右值二者之一。左值是指表达式结束后依然存在的持久化对象,右值是指表达式结束时就不再存在的临时对象。所有的具名变量或者对象都是左值,而右值不具名。很难得到左值和右值的真正定义,但是有一个可以区分左值和右值的便捷方法:看能不能对表达式取地址,如果能,则为左值,否则为右值。
看见书上又将右值分为将亡值和纯右值。纯右值就是c++98
标准中右值的概念,如非引用返回的函数返回的临时变量值;一些运算表达式,如1+2产生的临时变量;不跟对象关联的字面量值,如2,'c',true,"hello";这些值都不能够被取地址。
而将亡值则是c++11
新增的和右值引用相关的表达式,这样的表达式通常时将要移动的对象、T&&
函数返回值、std::move()
函数的返回值等,
不懂将亡值和纯右值的区别其实没关系,统一看作右值即可,不影响使用。
示例:
class A {
public:
int a;
};
A getTemp()
{
return A();
}
A a = getTemp();
左值引用、右值引用
c++98
中的引用很常见了,就是给变量取了个别名,在c++11
中,因为增加了右值引用(rvalue reference)的概念,所以c++98
中的引用都称为了左值引用(lvalue reference)。
int a = 10;
int& refA = a;
int& b = 1;
c++11
中的右值引用使用的符号是&&
,如
int&& a = 1;
int b = 1;
int && c = b;
class A {
public:
int a;
};
A getTemp()
{
return A();
}
A && a = getTemp();
getTemp()
返回的右值本来在表达式语句结束后,其生命也就该终结了(因为是临时变量),而通过右值引用,该右值又重获新生,其生命期将与右值引用类型变量a
的生命期一样,只要a
还活着,该右值临时变量将会一直存活下去。实际上就是给那个临时变量取了个名字。
注意:这里a
的类型是右值引用类型(int &&
),但是如果从左值和右值的角度区分它,它实际上是个左值。因为可以对它取地址,而且它还有名字,是一个已经命名的右值。
所以,左值引用只能绑定左值,右值引用只能绑定右值,如果绑定的不对,编译就会失败。但是,常量左值引用却是个奇葩,它可以算是一个“万能”的引用类型,它可以绑定非常量左值、常量左值、右值,而且在绑定右值的时候,常量左值引用还可以像右值引用一样将右值的生命期延长,缺点是,只能读不能改。
class A {
public:
int a;
};
A getTemp()
{
return A();
}
const A & a = getTemp();
事实上,很多情况下我们用来常量左值引用的这个功能却没有意识到,如下面的例子:
#include
using namespace std;
class Copyable {
public:
Copyable(){}
Copyable(const Copyable &o) {
cout << “Copied” << endl;
}
};
Copyable ReturnRvalue() {
return Copyable();
}
void AcceptVal(Copyable a) {
}
void AcceptRef(const Copyable& a) {
}
int main() {
cout << "pass by value: " << endl;
AcceptVal(ReturnRvalue());
cout << "pass by reference: " << endl;
AcceptRef(ReturnRvalue());
}
当我敲完上面的例子并运行后,发现结果和我想象的完全不一样!期望中AcceptVal(ReturnRvalue())
需要调用两次拷贝构造函数,一次在ReturnRvalue()
函数中,构造好了Copyable
对象,返回的时候会调用拷贝构造函数生成一个临时对象,在调用AcceptVal()
时,又会将这个对象拷贝给函数的局部变量a
,一共调用了两次拷贝构造函数。而AcceptRef()
的不同在于形参是常量左值引用,它能够接收一个右值,而且不需要拷贝。
而实际的结果是,不管哪种方式,一次拷贝构造函数都没有调用!
这是由于编译器默认开启了返回值优化(RVO/NRVO, RVO, Return Value Optimization 返回值优化,或者NRVO, Named Return Value Optimization)。编译器很聪明,发现在ReturnRvalue
内部生成了一个对象,返回之后还需要生成一个临时对象调用拷贝构造函数,很麻烦,所以直接优化成了1个对象对象,避免拷贝,而这个临时变量又被赋值给了函数的形参,还是没必要,所以最后这三个变量都用一个变量替代了,不需要调用拷贝构造函数。
虽然各大厂家的编译器都已经都有了这个优化,但是这并不是c++
标准规定的,而且不是所有的返回值都能够被优化,而这篇文章的主要讲的右值引用,移动语义可以解决编译器无法解决的问题。
为了更好的观察结果,可以在编译的时候加上-fno-elide-constructors
选项(关闭返回值优化)。
pass by value:
Copied
Copied
pass by reference:
Copied
上面这个例子本意是想说明常量左值引用能够绑定一个右值,可以减少一次拷贝(使用非常量的左值引用会编译失败),但是顺便讲到了编译器的返回值优化。。编译器还是干了很多事情的,很有用,但不能过于依赖,因为你也不确定它什么时候优化了什么时候没优化。
总结一下,其中T
是一个具体类型:
- 左值引用, 使用
T&
, 只能绑定左值
- 右值引用, 使用
T&&
, 只能绑定右值
- 常量左值, 使用
const T&
, 既可以绑定左值又可以绑定右值
- 已命名的右值引用,编译器会认为是个左值
- 编译器有返回值优化,但不要过于依赖
移动构造和移动赋值
回顾一下如何用c++实现一个字符串类MyString
,MyString
内部管理一个C语言的char *
数组,这个时候一般都需要实现拷贝构造函数和拷贝赋值函数,因为默认的拷贝是浅拷贝,而指针这种资源不能共享,不然一个析构了,另一个也就完蛋了。
具体代码如下:
#include
#include
#include
using namespace std;
class MyString
{
public:
static size_t CCtor;
public:
MyString(const char cstr=0){
if (cstr) {
m_data = new char[strlen(cstr)+1];
strcpy(m_data, cstr);
}
else {
m_data = new char[1];
m_data = ‘\0’;
}
}
MyString(const MyString& str) {
CCtor ++;
m_data = new char[ strlen(str.m_data) + 1 ];
strcpy(m_data, str.m_data);
}
MyString& operator=(const MyString& str){
if (this == &str)
return *this;
delete[] m_data;
m_data = new char[ strlen(str.m_data) + 1 ];
strcpy(m_data, str.m_data);
return *this;
}
~MyString() {
delete[] m_data;
}
char get_c_str() const { return m_data; }
private:
char m_data;
};
size_t MyString::CCtor = 0;
int main()
{
vector<MyString> vecStr;
vecStr.reserve(1000);
for(int i=0;i<1000;i++){
vecStr.push_back(MyString(“hello”));
}
cout << MyString::CCtor << endl;
}
代码看起来挺不错,却发现执行了1000
次拷贝构造函数,如果MyString("hello")
构造出来的字符串本来就很长,构造一遍就很耗时了,最后却还要拷贝一遍,而MyString("hello")
只是临时对象,拷贝完就没什么用了,这就造成了没有意义的资源申请和释放操作,如果能够直接使用临时对象已经申请的资源,既能节省资源,又能节省资源申请和释放的时间。而C++11
新增加的移动语义就能够做到这一点。
要实现移动语义就必须增加两个函数:移动构造函数和移动赋值构造函数。
#include
#include
#include
using namespace std;
class MyString
{
public:
static size_t CCtor;
static size_t MCtor;
static size_t CAsgn;
static size_t MAsgn;
public:
MyString(const char cstr=0){
if (cstr) {
m_data = new char[strlen(cstr)+1];
strcpy(m_data, cstr);
}
else {
m_data = new char[1];
m_data = ‘\0’;
}
}
MyString(const MyString& str) {
CCtor ++;
m_data = new char[ strlen(str.m_data) + 1 ];
strcpy(m_data, str.m_data);
}
MyString(MyString&& str) noexcept
:m_data(str.m_data) {
MCtor ++;
str.m_data = nullptr;
}
MyString& operator=(const MyString& str){
CAsgn ++;
if (this == &str)
return *this;
delete[] m_data;
m_data = new char[ strlen(str.m_data) + 1 ];
strcpy(m_data, str.m_data);
return *this;
}
MyString& operator=(MyString&& str) noexcept{
MAsgn ++;
if (this == &str)
return *this;
delete[] m_data;
m_data = str.m_data;
str.m_data = nullptr;
return *this;
}
~MyString() {
delete[] m_data;
}
char get_c_str() const { return m_data; }
private:
char m_data;
};
size_t MyString::CCtor = 0;
size_t MyString::MCtor = 0;
size_t MyString::CAsgn = 0;
size_t MyString::MAsgn = 0;
int main()
{
vector<MyString> vecStr;
vecStr.reserve(1000);
for(int i=0;i<1000;i++){
vecStr.push_back(MyString(“hello”));
}
cout << "CCtor = " << MyString::CCtor << endl;
cout << "MCtor = " << MyString::MCtor << endl;
cout << "CAsgn = " << MyString::CAsgn << endl;
cout << "MAsgn = " << MyString::MAsgn << endl;
}
可以看到,移动构造函数与拷贝构造函数的区别是,拷贝构造的参数是const MyString& str
,是常量左值引用,而移动构造的参数是MyString&& str
,是右值引用,而MyString("hello")
是个临时对象,是个右值,优先进入移动构造函数而不是拷贝构造函数。而移动构造函数与拷贝构造不同,它并不是重新分配一块新的空间,将要拷贝的对象复制过来,而是"偷"了过来,将自己的指针指向别人的资源,然后将别人的指针修改为nullptr
,这一步很重要,如果不将别人的指针修改为空,那么临时对象析构的时候就会释放掉这个资源,"偷"也白偷了。下面这张图可以解释copy和move的区别。
不用奇怪为什么可以抢别人的资源,临时对象的资源不好好利用也是浪费,因为生命周期本来就是很短,在你执行完这个表达式之后,它就毁灭了,充分利用资源,才能很高效。
对于一个左值,肯定是调用拷贝构造函数了,但是有些左值是局部变量,生命周期也很短,能不能也移动而不是拷贝呢?C++11
为了解决这个问题,提供了std::move()
方法来将左值转换为右值,从而方便应用移动语义。我觉得它其实就是告诉编译器,虽然我是一个左值,但是不要对我用拷贝构造函数,而是用移动构造函数吧。。。
int main()
{
vector<MyString> vecStr;
vecStr.reserve(1000);
for(int i=0;i<1000;i++){
MyString tmp("hello");
vecStr.push_back(tmp);
}
cout << "CCtor = " << MyString::CCtor << endl;
cout << "MCtor = " << MyString::MCtor << endl;
cout << "CAsgn = " << MyString::CAsgn << endl;
cout << "MAsgn = " << MyString::MAsgn << endl;
cout << endl;
MyString::CCtor = 0;
MyString::MCtor = 0;
MyString::CAsgn = 0;
MyString::MAsgn = 0;
vector<MyString> vecStr2;
vecStr2.reserve(1000);
for(int i=0;i<1000;i++){
MyString tmp("hello");
vecStr2.push_back(std::move(tmp));
}
cout << "CCtor = " << MyString::CCtor << endl;
cout << "MCtor = " << MyString::MCtor << endl;
cout << "CAsgn = " << MyString::CAsgn << endl;
cout << "MAsgn = " << MyString::MAsgn << endl;
}
CCtor = 0
MCtor = 1000
CAsgn = 0
MAsgn = 0
*/
下面再举几个例子:
MyString str1("hello");
MyString str2("world");
MyString str3(str1);
MyString str4(std::move(str1));
MyString str5;
str5 = str2;
MyString str6;
str6 = std::move(str2);
需要注意一下几点:
-
str6 = std::move(str2)
,虽然将str2
的资源给了str6
,但是str2
并没有立刻析构,只有在str2
离开了自己的作用域的时候才会析构,所以,如果继续使用str2
的m_data
变量,可能会发生意想不到的错误。
- 如果我们没有提供移动构造函数,只提供了拷贝构造函数,
std::move()
会失效但是不会发生错误,因为编译器找不到移动构造函数就去寻找拷贝构造函数,也这是拷贝构造函数的参数是const T&
常量左值引用的原因!
-
c++11中
的所有容器都实现了move
语义,move
只是转移了资源的控制权,本质上是将左值强制转化为右值使用,以用于移动拷贝或赋值,避免对含有资源的对象发生无谓的拷贝。move
对于拥有如内存、文件句柄等资源的成员的对象有效,如果是一些基本类型,如int和char[10]数组等,如果使用move,仍会发生拷贝(因为没有对应的移动构造函数),所以说move
对含有资源的对象说更有意义。
universal references(通用引用)
当右值引用和模板结合的时候,就复杂了。T&&
并不一定表示右值引用,它可能是个左值引用又可能是个右值引用。例如:
template<typename T>
void f( T&& param){
}
f(10);
int x = 10;
f(x);
如果上面的函数模板表示的是右值引用的话,肯定是不能传递左值的,但是事实却是可以。这里的&&
是一个未定义的引用类型,称为universal references
,它必须被初始化,它是左值引用还是右值引用却决于它的初始化,如果它被一个左值初始化,它就是一个左值引用;如果被一个右值初始化,它就是一个右值引用。
注意:只有当发生自动类型推断时(如函数模板的类型自动推导,或auto关键字),&&
才是一个universal references
。
例如:
template<typename T>
void f( T&& param);
template<typename T>
class Test {
Test(Test&& rhs);
};
void f(Test&& param);
template<typename T>
void f(std::vector<T>&& param);
template<typename T>
void f(const T&& param);
所以最终还是要看T
被推导成什么类型,如果T
被推导成了string
,那么T&&
就是string&&
,是个右值引用,如果T
被推导为string&
,就会发生类似string& &&
的情况,对于这种情况,c++11
增加了引用折叠的规则,总结如下:
- 所有的右值引用叠加到右值引用上仍然使一个右值引用。
- 所有的其他引用类型之间的叠加都将变成左值引用。
如上面的T& &&
其实就被折叠成了个string &
,是一个左值引用。
#include
#include
#include
using namespace std;
template<typename T>
void f(T&& param){
if (std::is_same<string, T>::value)
std::cout << “string” << std::endl;
else if (std::is_same<string&, T>::value)
std::cout << “string&” << std::endl;
else if (std::is_same<string&&, T>::value)
std::cout << “string&&” << std::endl;
else if (std::is_same<int, T>::value)
std::cout << “int” << std::endl;
else if (std::is_same<int&, T>::value)
std::cout << “int&” << std::endl;
else if (std::is_same<int&&, T>::value)
std::cout << “int&&” << std::endl;
else
std::cout << “unkown” << std::endl;
}
int main()
{
int x = 1;
f(1);
f(x);
int && a = 2;
f(a);
string str = “hello”;
f(str);
f(string(“hello”));
f(std::move(str));
}
所以,归纳一下, 传递左值进去,就是左值引用,传递右值进去,就是右值引用。如它的名字,这种类型确实很"通用",下面要讲的完美转发,就利用了这个特性。
完美转发
所谓转发,就是通过一个函数将参数继续转交给另一个函数进行处理,原参数可能是右值,可能是左值,如果还能继续保持参数的原有特征,那么它就是完美的。
void process(int& i){
cout << "process(int&):" << i << endl;
}
void process(int&& i){
cout << "process(int&&):" << i << endl;
}
void myforward(int&& i){
cout << “myforward(int&&):” << i << endl;
process(i);
}
int main()
{
int a = 0;
process(a);
process(1);
process(move(a));
myforward(2);
myforward(move(a));
}
上面的例子就是不完美转发,而c++中提供了一个std::forward()
模板函数解决这个问题。将上面的myforward()
函数简单改写一下:
void myforward(int&& i){
cout << "myforward(int&&):" << i << endl;
process(std::forward<int>(i));
}
myforward(2);
上面修改过后还是不完美转发,myforward()
函数能够将右值转发过去,但是并不能够转发左值,解决办法就是借助universal references
通用引用类型和std::forward()
模板函数共同实现完美转发。例子如下:
#include
#include
#include
using namespace std;
void RunCode(int &&m) {
cout << “rvalue ref” << endl;
}
void RunCode(int &m) {
cout << “lvalue ref” << endl;
}
void RunCode(const int &&m) {
cout << “const rvalue ref” << endl;
}
void RunCode(const int &m) {
cout << “const lvalue ref” << endl;
}
template<typename T>
void perfectForward(T && t) {
RunCode(forward<T> (t));
}
template<typename T>
void notPerfectForward(T && t) {
RunCode(t);
}
int main()
{
int a = 0;
int b = 0;
const int c = 0;
const int d = 0;
notPerfectForward(a);
notPerfectForward(move(b));
notPerfectForward(c);
notPerfectForward(move(d));
cout << endl;
perfectForward(a);
perfectForward(move(b));
perfectForward(c);
perfectForward(move(d));
}
上面的代码测试结果表明,在universal references
和std::forward
的合作下,能够完美的转发这4种类型。
emplace_back减少内存拷贝和移动
我们之前使用vector
一般都喜欢用push_back()
,由上文可知容易发生无谓的拷贝,解决办法是为自己的类增加移动拷贝和赋值函数,但其实还有更简单的办法!就是使用emplace_back()
替换push_back()
,如下面的例子:
#include
#include
#include
using namespace std;
class A {
public:
A(int i){
str = to_string(i);
}
~A(){}
A(const A& other): str(other.str){
cout << “A&” << endl;
}
public:
string str;
};
int main()
{
vector<A> vec;
vec.reserve(10);
for(int i=0;i<10;i++){
vec.push_back(A(i));
}
for(int i=0;i<10;i++)
cout << vec[i].str << endl;
}
可以看到效果是明显的,虽然没有测试时间,但是确实可以减少拷贝。emplace_back()
可以直接通过构造函数的参数构造对象,但前提是要有对应的构造函数。
对于map
和set
,可以使用emplace()
。基本上emplace_back()
对应push_bakc()
, emplce()
对应insert()
。
移动语义对swap()
函数的影响也很大,之前实现swap可能需要三次内存拷贝,而有了移动语义后,就可以实现高性能的交换函数了。
template <typename T>
void swap(T& a, T& b)
{
T tmp(std::move(a));
a = std::move(b);
b = std::move(tmp);
}
如果T是可移动的,那么整个操作会很高效,如果不可移动,那么就和普通的交换函数是一样的,不会发生什么错误,很安全。
总结
- 由两种值类型,左值和右值。
- 有三种引用类型,左值引用、右值引用和通用引用。左值引用只能绑定左值,右值引用只能绑定右值,通用引用由初始化时绑定的值的类型确定。
- 左值和右值是独立于他们的类型的,右值引用可能是左值可能是右值,如果这个右值引用已经被命名了,他就是左值。
- 引用折叠规则:所有的右值引用叠加到右值引用上仍然是一个右值引用,其他引用折叠都为左值引用。当
T&&
为模板参数时,输入左值,它将变成左值引用,输入右值则变成具名的右值应用。
- 移动语义可以减少无谓的内存拷贝,要想实现移动语义,需要实现移动构造函数和移动赋值函数。
-
std::move()
将一个左值转换成一个右值,强制使用移动拷贝和赋值函数,这个函数本身并没有对这个左值什么特殊操作。
-
std::forward()
和universal references
通用引用共同实现完美转发。
- 用
empalce_back()
替换push_back()
增加性能。
TODO
- 对模板类型自动推导还不太熟悉,继续学习Effective Modern C++。
-
std::move()和std::forward()
好像实现的并不复杂,有机会弄明白实现原理。
我的SegmentFault链接
参考
- 深入理解C++11:C++11新特性解析与应用
- 深入应用C++11:代码优化与工程级应用
- Effective Modern C++
疑问:Qt源码中函数最后面&、&&的含义?
Q_REQUIRED_RESULT QByteArray toLower() const &
{ return toLower_helper(*this); }
Q_REQUIRED_RESULT QByteArray toLower() &&
{ return toLower_helper(*this); }
要回答这个问题,首先要解释什么lvalue,什么是rvalue。
lvalue是c++中的object,它可以出现在xx==xxx 等号的左边,也可以出现在等号的右边
rvalue是c++ statement结束后会被销毁的东西,比如
int a=1;
int b=0;
int c=3;
a=b+c;
此处
将在此statement执行完后销毁。
rvalue不能放在等号的左边,所以
是错误的。
解释完什么是lvalue 什么是rvalue 接下来我们解释什么是& 什么是&&。
&是c++里的左值引用,&&是c++里的右值引用。
&是我们习以为常的东西,就不展开说了。
&&举下面一个例子解释
#include
#include
using namespace std;
int main()
{
string s = string(“h”) + “e” + “ll” + “o”;
cout << s << endl;
}在C++98 年代,也就是没有&&之前,
string的operator+定义是这样的:
string operator+ (const string& lhs, const string& rhs);
在c++11,也就是说有了&&之后 变成了这样
string operator+ (string&& lhs, string&& rhs);
上述两个标准的区别在于,c++98时,使用下述语句时
string s = string(“h”) + “e” + “ll” + “o”;
编译器将不得不重新分配内存空间放置因operator+形成的临时对象,因为编译器不能直接在原string的基础上追加+号后的string,这会导致+号前的string的值将会被改变。
string a=“zhihu”;
string b=“magicWorld”;
string c= a+b;
在第三行执行完后,你肯定不希望a的值变成"zhihumagicWorld",对吧。
而使用c++11时,编译器知道这是一个右值引用,那么它将可以直接在原string基础上追加+号后的sting,而且这样的做法并不会对原string产生任何影响。因为如前所述,右值会在statement执行完后被销毁。
所以右值引用的一个好处在于,减少开销。
有了以上知识储备,再回答这个问题就容易多了。在此引用校友的解释,因为他的解释我并不能超越。
表示这个函数只对this对象被调用的时候在外部是左值引用或者右值引用的时候有效,可以用来做奇怪的重载。
--vczh
赞同 44 9 条评论
收藏 喜欢 收起
在这里插入代码片