pytorch 初始化

初始化

import matplotlib.pyplot as plt
import torch
import torch.nn as nn
from torch.utils.data import Dataset,DataLoader
import torch.optim as optim
import numpy as np
random_seed=1000
# np.random.seed(random_seed)
torch.manual_seed(random_seed)

#自定义损失函数
class my_loss(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, x, y):
        # loss = nn.L1Loss()(x,y)
        # loss=nn.MSELoss()(x,y)
        # total_sum=torch.sum(torch.pow(x,2)+torch.pow(y,2))
        # total_sum = torch.sum(torch.pow(x, 2))
        # loss=torch.div(loss,total_sum)
        # loss=torch.mean(torch.sub(y,x))
        loss=torch.mean(torch.pow(torch.abs(torch.sub(y,x)),1))
        return loss
# 定义模型
class TheModelClass(nn.Module):
    def __init__(self):
        hidden=15
        super(TheModelClass, self).__init__()
        self.fc1 = nn.Linear(1,hidden)
        # self.relu=nn.Sigmoid()
   

你可能感兴趣的:(#,pytorch,pytorch,人工智能,python)