- 开源模型应用落地-DeepSeek-R1-Distill-Qwen-7B与vllm实现推理加速的正确姿势(一)
开源技术探险家
开源模型-实际应用落地#人工智能自然语言处理语言模型深度学习
一、前言在当今人工智能技术迅猛发展的时代,各类人工智能模型如雨后春笋般不断涌现,其性能的优劣直接影响着应用的广度与深度。从自然语言处理到计算机视觉,从智能安防到医疗诊断,AI模型广泛应用于各个领域,人们对其准确性、稳定性和高效性的期望也与日俱增。在此背景下,DeepSeek模型的出现为行业带来了新的曙光。DeepSeek团队开发的DeepSeek-R1-Distill-Qwen-7B模型,利用蒸馏
- Diffusion--人工智能领域的革命性技术
油泼辣子多加
专业名词解释人工智能
在人工智能领域,“diffusion”一词通常指的是“扩散模型”(DiffusionModels),其全称为“DenoisingDiffusionProbabilisticModels”(DDPMs)。扩散模型是一类生成式模型,它通过逐步去噪的方式,从随机噪声中生成高质量的数据,近年来在图像、音频、视频等多个领域取得了显著进展。1.发展历史扩散模型的概念源于物理学中的扩散过程,即粒子在介质中的随机
- 探索2025年的编程新趋势:技术、工具与未来展望
桂月二二
wasm人工智能前端
随着2025年的到来,编程技术领域依旧在高速发展。一些新兴的技术方向、工具和方法正在悄然改变开发者的日常实践。如果您是一名开发者,无论是资深还是初入门道,跟上这些趋势将让您的技能保持前沿,并为职业发展打下坚实基础。本文将从多个维度深入探讨当前最值得关注的编程技术,希望为您的技术提升带来启发。一、AI驱动的编程辅助工具人工智能已成为程序开发的重要组成部分。以下是几款2025年值得关注的AI驱动编程工
- 基于Hexo的主题Fluid搭建Github博客
qq742234984
计算机githubgitnpmnode.jshexo
公众号:数学建模与人工智能基于Hexo的主题Fluid搭建Github博客一、Github配置1.安装Git2.部署本地Git与Github连接(SSH)二、node.js安装和环境配置1.安装node.js2.查看安装是否成功(版本号)3.配置环境变量三、下载Hexo并配置fluid主题1.下载Hexo2.配置fluid主题1.安装fluid2.配置fluid3.更新部署博客页面4.部署到git
- 【自我修炼】 大疆技术总监对于大学生学习机器人工程师路线建议 ( 大一 篇)
2401_89323952
学习机器人
很多朋友私信问我对机器人和人工智能感兴趣,该怎么展开学习。最近稍微有点空,我写写我的看法。两年前,我在知乎回答如何定义「机器人」?YY硕的回答中试图给机器人做出一个比较仔细的定义,我觉得机器人和人工智能最大的区别在于是否要和物理世界进行交互。今年初在另一篇知乎回答里对机器人或人工智能的研究会帮助我们更好的了解人类自己吗?-YY硕的回答我说到传感器是和物理世界交互的基础。后来,我又在知乎回答有哪些与
- 【C++】C++回调函数基本用法(详细讲解)
米码收割机
C/C++c++php开发语言
博__主:米码收割机技__能:C++/Python语言公众号:测试开发自动化【获取源码+商业合作】荣__誉:阿里云博客专家博主、51CTO技术博主专__注:专注主流机器人、人工智能等相关领域的开发、测试技术。一文详解C++回调函数目录一文详解C++回调函数1.什么是回调函数?2.为什么需要回调函数3.回调函数的应用场合4.举例说明5.高级回调方式1.什么是回调函数?回调函数可以被简单地理解为:A函
- DeepSeek 详细使用教程
神探阿航
计算机产业科普与思考大模型人工智能
1.简介DeepSeek是一款基于人工智能技术的多功能工具,旨在帮助用户高效处理和分析数据、生成内容、解答问题、进行语言翻译等。无论是学术研究、商业分析还是日常使用,DeepSeek都能提供强大的支持。本教程将详细介绍DeepSeek的各项功能及使用方法。2.注册与登录注册:访问DeepSeek官网(https://www.deepseek.com)。点击“注册”按钮。填写邮箱地址、设置密码,并完
- 人工智能第2章-知识点与学习笔记
想拿高薪的韭菜
人工智能学习笔记
结合教材2.1节,阐述什么是知识、知识的特性,以及知识的表示。人工智能最早应用的两种逻辑是什么?阐述你对这两种逻辑表示的内涵理解。什么谓词,什么是谓词逻辑,什么是谓词公式。谈谈你对谓词逻辑中的量词的理解。阐述谓词公式的解释的含义。介绍谓词公式表示知识的一般步骤,阐述谓词逻辑表示知识的优点与局限性。什么是知识表示的产生式,请详细阐释产生式和谓词逻辑蕴涵式的差异。什么是产生式系统,请详细阐述产生式系统
- 微软推出GRIN-MoE:开创专家路由新范式
OpenCSG
microsoft
前沿科技速递在人工智能领域,模型的性能和可扩展性一直是研究的热点。微软最近推出的GRIN-MoE(Gradient-InformedMixture-of-Experts)模型,以其独特的架构和显著的性能表现,正引领着AI技术的前沿,特别是在编码和数学任务上展现出强大的能力。GRIN-MoE的发布标志着企业级应用中AI技术的又一次飞跃,旨在提升处理复杂任务的效率和准确性。来源:传神社区01模型简介G
- 动手学PyTorch建模与应用:从深度学习到大模型
王国平
pytorch人工智能数据分析python数据挖掘
在人工智能时代,机器学习技术日新月异,深度学习是机器学习领域中一个全新的研究方向和应用热点,它是机器学习的一种,也是实现人工智能的必由之路。深度学习的出现不仅推动了机器学习的发展,而且促进了人工智能技术的革新,已经被成功应用在语音识别、图像分类识别、地球物理、大语言模型等领域,具有巨大的发展潜力和价值。本书是一本带领读者快速学习PyTorch并将其运用于深度学习建模方向的入门指南,重点介绍了基于P
- AI浪潮下程序员的职业转型与技术进阶之路
nbsaas-boot
人工智能
一、引言1.1研究背景与意义在科技飞速发展的当今时代,人工智能(AI)无疑是最为耀眼的技术领域之一。从早期简单的专家系统到如今复杂的深度学习模型,AI技术经历了从理论探索到广泛应用的巨大跨越,正以前所未有的速度改变着我们的生活和工作方式。近年来,AI技术取得了一系列突破性进展。以GPT系列为代表的大型语言模型,展现出强大的自然语言处理能力,能够实现文本生成、对话交互、代码编写等多种任务。根据《20
- DeepSeek的出现对全球GPT产业产生的冲击
不要em0啦
机器学习gpt
引言近年来,人工智能技术的迅猛发展推动了自然语言处理(NLP)领域的革命性进步。特别是以GPT(GenerativePre-trainedTransformer)系列模型为代表的大规模预训练语言模型,已经在全球范围内引发了广泛关注和应用。然而,随着技术的不断演进,新兴的GPT模型如DeepSeek的出现,正在对全球GPT产业产生深远的影响。本文将从技术、市场、应用场景和产业生态等多个维度,深入探讨
- 国产AI疯卷!DeepSeek-R1成开源霸主,字节腾讯纷纷放大招?
盼达思文体科创
经验分享
引言家人们,最近的AI圈简直是“火药味”十足,热闹程度堪比世界杯!在科技飞速发展的当下,人工智能领域已经成为全球科技竞争的焦点,各国科技企业都在这个赛道上你追我赶,试图占据一席之地。AI技术不仅深刻改变了我们的生活方式,像智能语音助手让生活更便捷,智能推荐算法让信息获取更精准,还推动了众多行业的变革,如医疗、交通、金融等。今天咱们要聊的这几件AI大事,每一件都可能会对未来的科技走向产生深远影响。先
- Qwen2.5-Max
百态老人
笔记大数据人工智能
Qwen2.5-Max是阿里巴巴于2024年1月29日发布的一款旗舰级人工智能模型,基于混合专家(MoE)架构开发,拥有超过20万亿tokens的超大规模预训练数据。这一模型在多项权威基准测试中展现了卓越的性能,超越了包括DeepSeekV3、GPT-4和Claude-3.5-Sonnet在内的多款国际顶尖AI模型,标志着中国AI技术在高性能、低成本路线上的重大突破。技术特点与优势超大规模预训练数
- ChatGPT-4o和ChatGPT-4o mini的差异点
老六哥_AI助理指南
人工智能chatgpt
在人工智能领域,OpenAI再次引领创新潮流,近日正式发布了其最新模型——ChatGPT-4o及其经济实惠的小型版本ChatGPT-4oMini。这两款模型虽同属于ChatGPT系列,但在性能、应用场景及成本上展现出显著的差异。本文将通过图文并茂的方式,深入解析两者之间的不同点。一、性能差异ChatGPT-4o:全能型语言模型多模态处理能力:ChatGPT-4o不仅限于文本处理,更能够实时处理和生
- 第一章: AIGC概述
野老杂谈
AIGC时代的创新与未来AIGC大模型人工智能神经网络
1.AIGC的定义与历史1.1什么是AIGC?AIGC,全称为人工智能生成内容(ArtificialIntelligenceGeneratedContent),是一种利用人工智能技术来自动生成各种类型内容的方式。这些内容包括文字、图像、音频和视频等。简单来说,就是让计算机像人一样创作。例如,AI可以生成一篇文章、一幅画、一段音乐,甚至是一部短视频。AIGC是如何运作的?AIGC的核心技术包括机器学
- Ubuntu16.04环境下安装cuda10+pytorch1.2
小楼昨夜,东风
pytorch深度学习神经网络
1、背景环境:Ubuntu16.04&titanx作为新一代的人工智能训练平台的PYTORCH,有其独特的优势,为此,完整的安装这一平台,是开展所有工作的首要条件,一开始,笔者认为应该轻松的完成,但是发现实际上要从零完成这一工作,尤其是在NVIDIATITANX下,是需要3~4天的摸索的,为了便于后续的工作,也为了后面使用的童鞋,写下这篇文章,闲话少说,先上最终完成shell输出。xxx@xxxU
- 深度学习盛行,还记得哪些传统机器学习方法和模型?
硬件学长森哥
人工智能深度学习机器学习人工智能
开头森哥说:假期前后在准备成像技术的总结,目前已完成两部分,争取在摸索出一些编辑和运营技巧后,完善成一个系列和大家见面;当然也有可能会通过一些更加贴合摄影实用的角度出一些更加浅显的内容。最终如何呈现还需要慢慢摸索。传统机器学习是指在深度学习盛行之前开发的机器学习和人工智能技术。这些传统方法通常依赖于手工设计的特征提取和模型结构。而深度学习是一种机器学习技术,它通过深层神经网络从原始数据中学习特征表
- 探索自然语言处理的前沿:使用OpenAI API进行文本分析
qq_37836323
自然语言处理easyui人工智能python
#引言自然语言处理(NLP)是人工智能领域中最令人兴奋和快速发展的部分之一。本文将介绍如何使用OpenAI的API进行文本分析。我们将通过代码示例,深入探讨如何利用这些工具来提升应用程序的智能和功能。#主要内容##什么是OpenAIAPI?OpenAIAPI提供了强大的自然语言处理能力,能够帮助开发者在自己的应用中集成先进的语言模型。这些模型可以用于文本生成、情感分析、翻译等多种任务。##使用AP
- 【PyTorch】6.张量运算函数:一键开启!PyTorch 张量函数的宝藏工厂
Icomi_
805.Pytorch入门pytorch人工智能pythonc语言c++深度学习机器学习
目录1.常见运算函数个人主页:Icomi专栏地址:PyTorch入门在深度学习蓬勃发展的当下,PyTorch是不可或缺的工具。它作为强大的深度学习框架,为构建和训练神经网络提供了高效且灵活的平台。神经网络作为人工智能的核心技术,能够处理复杂的数据模式。通过PyTorch,我们可以轻松搭建各类神经网络模型,实现从基础到高级的人工智能应用。接下来,就让我们一同走进PyTorch的世界,探索神经网络与人
- 语音识别播报人工智能分类垃圾桶(论文+源码)
沐欣工作室_lvyiyi
人工智能语音识别毕业设计PLC单片机单片机毕业设计
2.1需求分析本次语音识别播报人工智能分类垃圾桶,设计功能要求如下∶1、具有四种垃圾桶,分别为用来回收厨余垃圾,有害垃圾,可回收垃圾,其他垃圾。2、当用户语音说出“旧报纸”,“剩菜”等特定词语时,系统可以通过语音识别模块准确检测出该垃圾属于何种类型,。3、根据检测出的垃圾类型,系统通过舵机自动打开相应的垃圾桶,并通过语音播报模块提醒用户。2.2系统整体设计针对分成需求,设计了如图2.1所示的整体系
- 《AI逆袭:科技与人类的终极对决,谁才是未来的主宰?》
云边有个稻草人
热门文章人工智能科技
目录第一章:人工智能的崛起1.1AI技术的基础与发展1.2AI的技术分支1.3AI的应用领域第二章:AI与人类的关系2.1AI对就业的影响2.2AI与伦理问题2.3AI与创意的结合第三章:AI的未来:谁才是主宰?3.1AI与人类的合作3.2AI的自主性与未来3.3AI与社会的融合第四章:AI技术实践——代码示例4.1图像分类(使用TensorFlow)结语导语人工智能(AI)无疑是当前科技发展的热
- 自然语言编程:用 Cursor 将需求转化为代码
drebander
AI编程Cursor
引言在传统编程中,开发者需要精确掌握语法规则、API接口和框架特性才能实现功能需求。然而,随着人工智能技术的发展,以自然语言交互为核心的编程方式正在颠覆这一流程。Cursor作为一款智能编程助手,通过其自然语言编程功能,允许开发者直接通过文本描述生成代码,将模糊的需求快速转化为可执行的程序。本文将深入探讨Cursor的自然语言交互能力,并通过实际案例(如生成React组件、Python脚本等),展
- 模式识别与机器学习(Python实现):基于sklearn朴素贝叶斯模型实现男女分类
CV视界
模式识别机器学习与图像处理机器学习python人工智能
模式识别与机器学习(Python实现):基于sklearn朴素贝叶斯模型和pazen窗方法实现男女分类欢迎大家来到安静到无声的《模式识别与人工智能(程序与算法)》,如果对所写内容感兴趣请看模式识别与人工智能(程序与算法)系列讲解-总目录,同时这也可以作为大家学习的参考。欢迎订阅,优惠价只需9.9元,请多多支持!目录标题模式识别与机器学习(Python实现):基于sklearn朴素贝叶斯模型和paz
- ️ 在 Windows WSL 上部署 Ollama 和大语言模型的完整指南20241206
Narutolxy
技术干货分享智浪初航windows语言模型人工智能
️在WindowsWSL上部署Ollama和大语言模型的完整指南引言随着大语言模型(LLM)和人工智能的飞速发展,越来越多的开发者尝试在本地环境中部署大模型进行实验。然而,由于资源需求高、网络限制多以及工具复杂性,部署过程常常充满挑战。本指南基于实际经验,详细讲解如何在WindowsWSL(WindowsSubsystemforLinux)上部署Ollama和大语言模型,同时解决端口转发等常见痛点
- 数字孪生下的智慧城市(城市大脑)建设方案——建模层
百态老人
智慧城市人工智能
要构建城市信息模型(CIM)、建筑信息模型(BIM)及仿真模型,并实现L3级精度的核心区三维建模,需结合多源数据与多层级标准,具体步骤如下:1.CIM建模层构建L3级精度标准定义CIM模型分为7级(CIM1-CIM7),其中CIM3级对应标准模型,需满足以下要求:三维框架表达:包括建筑物、道路、场地、管线等实体的基本结构。内外表面建模:用倾斜摄影、BIM或CAD数据细化建筑内外表面细节。数据源:卫
- Ollama 部署 DeepSeek - r1 教程:Windows 与 Linux 篇
Fgaoxing
windowslinux人工智能
在人工智能技术飞速发展的今天,能够在本地部署并使用先进的模型成为许多技术爱好者和专业人士的追求。DeepSeek-r1以其出色的性能备受关注,借助Ollama工具,我们可以方便地在Windows和Linux系统上完成部署。下面就为大家详细介绍具体步骤。一、准备工作在开始部署之前,需要确保已经安装了Ollama。如果尚未安装,请按照以下对应系统的安装方法进行操作。(一)Windows系统安装Olla
- DeepSeek:开启智能搜索与AI发展的新纪元
gs80140
AI人工智能
在人工智能领域,DeepSeek正以其卓越的技术创新和强大的性能表现,成为全球瞩目的焦点。作为一款基于深度学习技术的智能搜索引擎和AI模型,DeepSeek不仅在技术上取得了重大突破,还在多个应用场景中展现了巨大的应用潜力,为用户带来了前所未有的智能体验。一、DeepSeek简介DeepSeek由杭州深度求索人工智能基础技术研究有限公司推出,是一款集自然语言处理(NLP)、计算机视觉(CV)、强化
- 【Java】已解决java.lang.ClassNotFoundException异常
屿小夏
java开发语言
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- 【Python】一文教你快速遍历文件夹下所有文件
鸽芷咕
python开发语言
鸽芷咕:个人主页个人专栏:《C++干货基地》《粉丝福利》⛺️生活的理想,就是为了理想的生活!博主简介博主致力于嵌入式、Python、人工智能、C/C++领域和各种前沿技术的优质博客分享,用最优质的内容带来最舒适的阅读体验!在博客领域获得C/C++领域优质、CSDN年度征文第一、掘金2023年人气作者、华为云享专家、支付宝开放社区优质博主等头衔。个人社区&个人社群加入点击即可介绍加入链接个人社群社群
- 辗转相处求最大公约数
沐刃青蛟
C++漏洞
无言面对”江东父老“了,接触编程一年了,今天发现还不会辗转相除法求最大公约数。惭愧惭愧!
为此,总结一下以方便日后忘了好查找。
1.输入要比较的两个数a,b
忽略:2.比较大小(因为后面要的是大的数对小的数做%操作)
3.辗转相除(用循环不停的取余,如a%b,直至b=0)
4.最后的a为两数的最大公约数
&
- F5负载均衡会话保持技术及原理技术白皮书
bijian1013
F5负载均衡
一.什么是会话保持? 在大多数电子商务的应用系统或者需要进行用户身份认证的在线系统中,一个客户与服务器经常经过好几次的交互过程才能完成一笔交易或者是一个请求的完成。由于这几次交互过程是密切相关的,服务器在进行这些交互过程的某一个交互步骤时,往往需要了解上一次交互过程的处理结果,或者上几步的交互过程结果,服务器进行下
- Object.equals方法:重载还是覆盖
Cwind
javagenericsoverrideoverload
本文译自StackOverflow上对此问题的讨论。
原问题链接
在阅读Joshua Bloch的《Effective Java(第二版)》第8条“覆盖equals时请遵守通用约定”时对如下论述有疑问:
“不要将equals声明中的Object对象替换为其他的类型。程序员编写出下面这样的equals方法并不鲜见,这会使程序员花上数个小时都搞不清它为什么不能正常工作:”
pu
- 初始线程
15700786134
暑假学习的第一课是讲线程,任务是是界面上的一条线运动起来。
既然是在界面上,那必定得先有一个界面,所以第一步就是,自己的类继承JAVA中的JFrame,在新建的类中写一个界面,代码如下:
public class ShapeFr
- Linux的tcpdump
被触发
tcpdump
用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具。 tcpdump可以将网络中传送的数据包的“头”完全截获下来提供分析。它支 持针对网络层、协议、主机、网络或端口的过滤,并提供and、or、not等逻辑语句来帮助你去掉无用的信息。
实用命令实例
默认启动
tcpdump
普通情况下,直
- 安卓程序listview优化后还是卡顿
肆无忌惮_
ListView
最近用eclipse开发一个安卓app,listview使用baseadapter,里面有一个ImageView和两个TextView。使用了Holder内部类进行优化了还是很卡顿。后来发现是图片资源的问题。把一张分辨率高的图片放在了drawable-mdpi文件夹下,当我在每个item中显示,他都要进行缩放,导致很卡顿。解决办法是把这个高分辨率图片放到drawable-xxhdpi下。
&nb
- 扩展easyUI tab控件,添加加载遮罩效果
知了ing
jquery
(function () {
$.extend($.fn.tabs.methods, {
//显示遮罩
loading: function (jq, msg) {
return jq.each(function () {
var panel = $(this).tabs(&
- gradle上传jar到nexus
矮蛋蛋
gradle
原文地址:
https://docs.gradle.org/current/userguide/maven_plugin.html
configurations {
deployerJars
}
dependencies {
deployerJars "org.apache.maven.wagon
- 千万条数据外网导入数据库的解决方案。
alleni123
sqlmysql
从某网上爬了数千万的数据,存在文本中。
然后要导入mysql数据库。
悲剧的是数据库和我存数据的服务器不在一个内网里面。。
ping了一下, 19ms的延迟。
于是下面的代码是没用的。
ps = con.prepareStatement(sql);
ps.setString(1, info.getYear())............;
ps.exec
- JAVA IO InputStreamReader和OutputStreamReader
百合不是茶
JAVA.io操作 字符流
这是第三篇关于java.io的文章了,从开始对io的不了解-->熟悉--->模糊,是这几天来对文件操作中最大的感受,本来自己认为的熟悉了的,刚刚在回想起前面学的好像又不是很清晰了,模糊对我现在或许是最好的鼓励 我会更加的去学 加油!:
JAVA的API提供了另外一种数据保存途径,使用字符流来保存的,字符流只能保存字符形式的流
字节流和字符的难点:a,怎么将读到的数据
- MO、MT解读
bijian1013
GSM
MO= Mobile originate,上行,即用户上发给SP的信息。MT= Mobile Terminate,下行,即SP端下发给用户的信息;
上行:mo提交短信到短信中心下行:mt短信中心向特定的用户转发短信,你的短信是这样的,你所提交的短信,投递的地址是短信中心。短信中心收到你的短信后,存储转发,转发的时候就会根据你填写的接收方号码寻找路由,下发。在彩信领域是一样的道理。下行业务:由SP
- 五个JavaScript基础问题
bijian1013
JavaScriptcallapplythisHoisting
下面是五个关于前端相关的基础问题,但却很能体现JavaScript的基本功底。
问题1:Scope作用范围
考虑下面的代码:
(function() {
var a = b = 5;
})();
console.log(b);
什么会被打印在控制台上?
回答:
上面的代码会打印 5。
&nbs
- 【Thrift二】Thrift Hello World
bit1129
Hello world
本篇,不考虑细节问题和为什么,先照葫芦画瓢写一个Thrift版本的Hello World,了解Thrift RPC服务开发的基本流程
1. 在Intellij中创建一个Maven模块,加入对Thrift的依赖,同时还要加上slf4j依赖,如果不加slf4j依赖,在后面启动Thrift Server时会报错
<dependency>
- 【Avro一】Avro入门
bit1129
入门
本文的目的主要是总结下基于Avro Schema代码生成,然后进行序列化和反序列化开发的基本流程。需要指出的是,Avro并不要求一定得根据Schema文件生成代码,这对于动态类型语言很有用。
1. 添加Maven依赖
<?xml version="1.0" encoding="UTF-8"?>
<proj
- 安装nginx+ngx_lua支持WAF防护功能
ronin47
需要的软件:LuaJIT-2.0.0.tar.gz nginx-1.4.4.tar.gz &nb
- java-5.查找最小的K个元素-使用最大堆
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
public class MinKElement {
/**
* 5.最小的K个元素
* I would like to use MaxHeap.
* using QuickSort is also OK
*/
public static void
- TCP的TIME-WAIT
bylijinnan
socket
原文连接:
http://vincent.bernat.im/en/blog/2014-tcp-time-wait-state-linux.html
以下为对原文的阅读笔记
说明:
主动关闭的一方称为local end,被动关闭的一方称为remote end
本地IP、本地端口、远端IP、远端端口这一“四元组”称为quadruplet,也称为socket
1、TIME_WA
- jquery ajax 序列化表单
coder_xpf
Jquery ajax 序列化
checkbox 如果不设定值,默认选中值为on;设定值之后,选中则为设定的值
<input type="checkbox" name="favor" id="favor" checked="checked"/>
$("#favor&quo
- Apache集群乱码和最高并发控制
cuisuqiang
apachetomcat并发集群乱码
都知道如果使用Http访问,那么在Connector中增加URIEncoding即可,其实使用AJP时也一样,增加useBodyEncodingForURI和URIEncoding即可。
最大连接数也是一样的,增加maxThreads属性即可,如下,配置如下:
<Connector maxThreads="300" port="8019" prot
- websocket
dalan_123
websocket
一、低延迟的客户端-服务器 和 服务器-客户端的连接
很多时候所谓的http的请求、响应的模式,都是客户端加载一个网页,直到用户在进行下一次点击的时候,什么都不会发生。并且所有的http的通信都是客户端控制的,这时候就需要用户的互动或定期轮训的,以便从服务器端加载新的数据。
通常采用的技术比如推送和comet(使用http长连接、无需安装浏览器安装插件的两种方式:基于ajax的长
- 菜鸟分析网络执法官
dcj3sjt126com
网络
最近在论坛上看到很多贴子在讨论网络执法官的问题。菜鸟我正好知道这回事情.人道"人之患好为人师" 手里忍不住,就写点东西吧. 我也很忙.又没有MM,又没有MONEY....晕倒有点跑题.
OK,闲话少说,切如正题. 要了解网络执法官的原理. 就要先了解局域网的通信的原理.
前面我们看到了.在以太网上传输的都是具有以太网头的数据包. 
- Android相对布局属性全集
dcj3sjt126com
android
RelativeLayout布局android:layout_marginTop="25dip" //顶部距离android:gravity="left" //空间布局位置android:layout_marginLeft="15dip //距离左边距
// 相对于给定ID控件android:layout_above 将该控件的底部置于给定ID的
- Tomcat内存设置详解
eksliang
jvmtomcattomcat内存设置
Java内存溢出详解
一、常见的Java内存溢出有以下三种:
1. java.lang.OutOfMemoryError: Java heap space ----JVM Heap(堆)溢出JVM在启动的时候会自动设置JVM Heap的值,其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)不可超过物理内存。
可以利用JVM提
- Java6 JVM参数选项
greatwqs
javaHotSpotjvmjvm参数JVM Options
Java 6 JVM参数选项大全(中文版)
作者:Ken Wu
Email:
[email protected]
转载本文档请注明原文链接 http://kenwublog.com/docs/java6-jvm-options-chinese-edition.htm!
本文是基于最新的SUN官方文档Java SE 6 Hotspot VM Opt
- weblogic创建JMC
i5land
weblogicjms
进入 weblogic控制太
1.创建持久化存储
--Services--Persistant Stores--new--Create FileStores--name随便起--target默认--Directory写入在本机建立的文件夹的路径--ok
2.创建JMS服务器
--Services--Messaging--JMS Servers--new--name随便起--Pers
- 基于 DHT 网络的磁力链接和BT种子的搜索引擎架构
justjavac
DHT
上周开发了一个磁力链接和 BT 种子的搜索引擎 {Magnet & Torrent},本文简单介绍一下主要的系统功能和用到的技术。
系统包括几个独立的部分:
使用 Python 的 Scrapy 框架开发的网络爬虫,用来爬取磁力链接和种子;
使用 PHP CI 框架开发的简易网站;
搜索引擎目前直接使用的 MySQL,将来可以考虑使
- sql添加、删除表中的列
macroli
sql
添加没有默认值:alter table Test add BazaarType char(1)
有默认值的添加列:alter table Test add BazaarType char(1) default(0)
删除没有默认值的列:alter table Test drop COLUMN BazaarType
删除有默认值的列:先删除约束(默认值)alter table Test DRO
- PHP中二维数组的排序方法
abc123456789cba
排序二维数组PHP
<?php/*** @package BugFree* @version $Id: FunctionsMain.inc.php,v 1.32 2005/09/24 11:38:37 wwccss Exp $*** Sort an two-dimension array by some level
- hive优化之------控制hive任务中的map数和reduce数
superlxw1234
hivehive优化
一、 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务。 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);2. 
- Spring Boot 1.2.4 发布
wiselyman
spring boot
Spring Boot 1.2.4已于6.4日发布,repo.spring.io and Maven Central可以下载(推荐使用maven或者gradle构建下载)。
这是一个维护版本,包含了一些修复small number of fixes,建议所有的用户升级。
Spring Boot 1.3的第一个里程碑版本将在几天后发布,包含许多