kafka
1、消息传输格式:纯二进制的字节序列
2、传输方式:
2.1 点对点模型:一对一,这里面的点对点指的是同一条消息只能被下游的一个消费者消费,其他消费者则不能染指。
2.2 发布/订阅模型:主题topic(逻辑语义相同的消息容器),可能存在多个发布者向相同的主题发送消息,订阅者可能也存在多个
3、削峰填谷:缓冲上下游瞬时突发流量,使其更平滑。特别是对于那种发送能力很强的上游系统,如果没有消息引擎的保护,“脆弱”的下游系统可能会直接被压垮导致全链路服务“雪崩”。但是,一旦有了消息引擎,它能够有效地对抗上游的流量冲击,真正做到将上游的“峰”填满到“谷”中,避免了流量的震荡。
比如点击订阅按钮会调用订单系统生成对应的订单,而处理该订单会依次调用下游的多个子系统服务 ,比如调用支付宝和微信支付的接口、查询你的登录信息、验证课程信息等。显然上游的订单操作比较简单,它的 TPS 要远高于处理订单的下游服务,因此如果上下游系统直接对接,势必会出现下游服务无法及时处理上游订单从而造成订单堆积的情形。特别是当出现类似于秒杀这样的业务时,上游订单流量会瞬时增加,可能出现的结果就是直接压跨下游子系统服务。这样当出现秒杀业务时,Kafka 能够将瞬时增加的订单流量全部以消息形式保存在对应的主题中,既不影响上游服务的 TPS,同时也给下游子服务留出了充足的时间去消费它们。这就是 Kafka 这类消息引擎系统的最大意义所在。
4、TPS:系统吞吐量,Transaction per second ,TPS = 并发数 / 平均响应时间
消息:Record。Kafka 是消息引擎嘛,这里的消息就是指 Kafka 处理的主要对象。
5、Topic:主题,在 Kafka 中,发布订阅的对象是主题(Topic),你可以为每个业务、每个应用甚至是每类数据都创建专属的主题。在实际使用中多用来区分具体的业务。
6、broker:Kafka 的 服务器端 由被称为 Broker 的服务进程构成,即一个 Kafka 集群由多个 Broker 组成,Broker 负责接收和处理客户端发送过来的请求,以及对消息进行持久化。虽然多个 Broker 进程能够运行在同一台机器上,但更常见的做法是将不同的 Broker 分散运行在不同的机器上,这样如果集群中某一台机器宕机,即使在它上面运行的所有 Broker 进程都挂掉了,其他机器上的 Broker 也依然能够对外提供服务。这其实就是 Kafka 提供 高可用 的手段之一。
7、生产者和消费者统称为 客户端(Clients)
8、Replication:备份机制,实现 高可用 的另一个手段就是备份机制。备份的思想很简单,就是把相同的数据拷贝到多台机器上,而这些相同的数据拷贝在 Kafka 中被称为副本(Replica)
9、Replica:副本,副本的数量是可以配置的,这些副本保存着相同的数据,但却有不同的角色和作用,Leader-Follower
10、Leader Replica:领导者副本,对外提供服务,这里的对外指的是与客户端程序进行交互
11、Follower Replica:追随者副本,后者只是被动地追随领导者副本而已,不能与外界进行交互。生产者总是向领导者副本写消息;而消费者总是从领导者副本读消息。至于追随者副本,它只做一件事:向领导者副本发送请求,请求领导者把最新生产的消息发给它,这样它能保持与领导者的同步。
12、Scalability:伸缩性,倘若领导者副本积累了太多的数据以至于单台 Broker 机器都无法容纳了,此时应该怎么办呢?一个很自然的想法就是,能否把数据分割成多份保存在不同的 Broker 上 —》分区 Partitioning
13、Partitioning:分区,一个有序不变的消息序列。每个主题下可以有多个分区。Kafka 中的分区机制指的是将每个主题划分成多个分区(Partition),每个分区是一组有序的消息日志。生产者生产的每条消息只会被发送到一个分区中,也就是说如果向一个双分区的主题发送一条消息,这条消息要么在分区 0 中,要么在分区 1 中。如你所见,Kafka 的分区编号是从 0 开始的,如果 Topic 有 100 个分区,那么它们的分区号就是从 0 到 99。
每个分区下可以配置若干个副本,其中只能有 1 个领导者副本和 N-1 个追随者副本。生产者向分区写入消息,每条消息在分区中的位置信息由一个叫位移(Offset)的数据来表征。分区位移总是从 0 开始,假设一个生产者向一个空分区写入了 10 条消息,那么这 10 条消息的位移依次是 0、1、2、…、9
消息位移:Offset。表示分区中每条消息的位置信息,是一个单调递增且不变的值。
如何持久化数据
15、消息日志(Log):Kafka 使用消息日志(Log)来保存数据,一个日志就是磁盘上一个只能追加写(Append-only)消息的物理文件。因为只能追加写入,故避免了缓慢的随机 I/O 操作,改为性能较好的顺序 I/O 写操作,这也是实现 Kafka 高吞吐量特性的一个重要手段
不过如果你不停地向一个日志写入消息,最终也会耗尽所有的磁盘空间,因此 Kafka 必然要定期地删除消息以回收磁盘。怎么删除呢?简单来说就是通过日志段(Log Segment)机制。
16、日志段(Log Segment)机制:在 Kafka 底层,一个日志又进一步细分成多个日志段,消息被追加写到当前最新的日志段中,当写满了一个日志段后,Kafka 会自动切分出一个新的日志段,并将老的日志段封存起来。Kafka 在后台还有定时任务会定期地检查老的日志段是否能够被删除,从而实现回收磁盘空间的目的。
17、消费者组(Consumer Group):所谓的消费者组,指的是多个消费者实例共同组成一个组来消费一组主题。多个消费者实例共同组成的一个组,同时消费多个分区以实现高吞吐。
这组主题中的每个分区都只会被组内的一个消费者实例消费,其他消费者实例不能消费它。为什么要引入消费者组呢?主要是为了提升消费者端的吞吐量。多个消费者实例同时消费,加速整个消费端的吞吐量(TPS)
18、重平衡(Rebalance):消费者组内某个消费者实例挂掉后,其他消费者实例自动重新分配订阅主题分区的过程。Rebalance 是 Kafka 消费者端实现 高可用 的重要手段。
消费者组里面的所有消费者实例不仅“瓜分”订阅主题的数据,而且更酷的是它们还能彼此协助。假设组内某个实例挂掉了,Kafka 能够自动检测到,然后把这个 Failed 实例之前负责的分区转移给其他活着的消费者。这个过程就是 Kafka 中大名鼎鼎的“重平衡”(Rebalance)
19、消费者位移(Consumer Offset):表征消费者消费进度,每个消费者都有自己的消费者位移。
每个消费者在消费消息的过程中必然需要有个字段记录它当前消费到了分区的哪个位置上,这个字段就是消费者位移(Consumer Offset)。注意,这和上面所说的位移完全不是一个概念。上面的“位移”表征的是分区内的消息位置,它是不变的,即一旦消息被成功写入到一个分区上,它的位移值就是固定的了。而消费者位移则不同,它可能是随时变化的,毕竟它是消费者消费进度的指示器嘛。另外每个消费者有着自己的消费者位移,因此一定要区分这两类位移的区别。我个人把消息在分区中的位移称为分区位移,而把消费者端的位移称为消费者位移。
为什么 Kafka 不像 MySQL 那样允许追随者副本对外提供读服务?
链接:https://www.zhihu.com/question/327925275/answer/705690755主从分离与否没有绝对的优劣,它仅仅是一种架构设计,各自有适用的场景。第二、如你所说,Redis和MySQL都支持主从读写分离,我个人觉得这和它们的使用场景有关。对于那种读操作很多而写操作相对不频繁的负载类型而言,采用读写分离是非常不错的方案——我们可以添加很多follower横向扩展,提升读操作性能。反观Kafka,它的主要场景还是在消息引擎而不是以数据存储的方式对外提供读服务,通常涉及频繁地生产消息和消费消息,这不属于典型的读多写少场景,因此读写分离方案在这个场景下并不太适合。
第三、Kafka副本机制使用的是异步消息拉取,因此存在leader和follower之间的不一致性。如果要采用读写分离,必然要处理副本lag引入的一致性问题,比如如何实现read-your-writes、如何保证单调读(monotonic reads)以及处理消息因果顺序颠倒的问题。相反地,如果不采用读写分离,所有客户端读写请求都只在Leader上处理也就没有这些问题了——当然最后全局消息顺序颠倒的问题在Kafka中依然存在,常见的解决办法是使用单分区,其他的方案还有version vector,但是目前Kafka没有提供。
最后、社区正在考虑引入适度的读写分离方案,比如允许某些指定的follower副本(主要是为了考虑地理相近性)可以对外提供读服务。当然目前这个方案还在讨论中。