二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。
一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:
如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在 O(log2N),搜索时间复杂度O(log2N)。
template<class K, class V>
struct AVLTreeNode
{
AVLTreeNode<K, V>* _left; //左孩子
AVLTreeNode<K, V>* _right; //右孩子
AVLTreeNode<K, V>* _parent;//双亲
pair<K, V> _kv;
int _bf; //平衡因子
AVLTreeNode(const pair<K, V>& kv)
: _left(nullptr)
, _right(nullptr)
, _parent(nullptr)
, _kv(kv)
, _bf(0)
{}
};
如果在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构,使之平衡化。根据节点插入位置的不同,AVL树的旋转分为四种:
void RotateR(Node* parent)
{
Node* pParent = parent->_parent;
Node* subL = parent->_left;
Node* subLR = subL->_right;
parent->_left = subLR;
if (subLR)
{
subLR->_parent = parent;
}
subL->_right = parent;
parent->_parent = subL;
if (_root == parent)
{
_root = subL;
subL->_parent = nullptr;
}
else
{
if (parent == pParent->_left)
{
pParent->_left = subL;
}
else
{
pParent->_right = subL;
}
subL->_parent = pParent;
}
parent->_bf = subL->_bf = 0;
}
void RotateL(Node* parent)
{
Node* pParent = parent->_parent;
Node* subR = parent->_right;
Node* subRL = subR->_left;
parent->_right = subRL;
if (subRL)
{
subRL->_parent = parent;
}
subR->_left = parent;
parent->_parent = subR;
if (_root == parent)
{
_root = subR;
subR->_parent = nullptr;
}
else
{
if (parent == pParent->_left)
{
pParent->_left = subR;
}
else
{
pParent->_right = subR;
}
subR->_parent = pParent;
}
parent->_bf = subR->_bf = 0;
}
void RotateLR(Node* parent)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
int bf = subLR->_bf;
RotateL(parent->_left);
RotateR(parent);
//画图理解平衡因子的调节
if (bf == 1)
{
parent->_bf = 0;
subL->_bf = -1;
subLR->_bf = 0;
}
else if (bf == -1)
{
parent->_bf = 1;
subL->_bf = 0;
subLR->_bf = 0;
}
else if (bf == 0)
{
parent->_bf = subL->_bf = subLR->_bf = 0;
}
}
void RotateRL(Node* parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
int bf = subRL->_bf;
RotateR(parent->_right);
RotateL(parent);
//画图理解平衡因子的调节
if (bf == 1)
{
parent->_bf = -1;
subR->_bf = 0;
subRL->_bf = 0;
}
else if (bf == -1)
{
parent->_bf = 0;
subR->_bf = 1;
subRL->_bf = 0;
}
else if (bf == 0)
{
parent->_bf = subR->_bf = subRL->_bf = 0;
}
}
总结:
假如以parent为根的子树不平衡,即parent的平衡因子为2或者-2,分以下情况考虑
1.parent的平衡因子为2,说明parent的右子树高,设parent的右子树的根为subR
2.parent的平衡因子为-2,说明parent的左子树高,设parent的左子树的根为subL
旋转完成后,原parent为根的子树的高度降低,已经平衡,不需要再向上更新。
AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么AVL树的插入过程可以分为两步:
bool Insert(const pair<K, V>& kv)
{
if (_root == nullptr)
{
_root = new Node(kv);
return true;
}
Node* cur = _root;
Node* parent = nullptr;
while (cur)
{
if (kv.first > cur->_kv.first)
{
parent = cur;
cur = cur->_right;
}
else if (kv.first < cur->_kv.first)
{
parent = cur;
cur = cur->_left;
}
else
{
return false;
}
}
cur = new Node(kv);
if (kv.first > parent->_kv.first)
{
parent->_right = cur;
cur->_parent = parent;
}
else
{
parent->_left = cur;
cur->_parent = parent;
}
//更新平衡因子以及AVL树的旋转
while (parent)
{
//更新双亲的平衡因子
if (cur == parent->_right)
{
parent->_bf++;
}
else
{
parent->_bf--;
}
//检测双亲的平衡因子是否满足(0,-1,1)
if (parent->_bf == 0)
{
break;
}
else if (parent->_bf == 1 || parent->_bf == -1)
{
//继续向上调整parent,更新并检测平衡因子
cur = parent;
parent = parent->_parent;
}
else if (parent->_bf == 2 || parent->_bf == -2)
{
//双亲的平衡因子为正负2,违反了AVL树的平衡性,需要对以Parent为根的树进行旋转处理
if (parent->_bf == 2)
{
if (cur->_bf == 1)
{
//左单旋
RotateL(parent);
}
else if (cur->_bf == -1)
{
//双旋:先右单旋再左单旋
RotateRL(parent);
}
}
else if (parent->_bf == -2)
{
if (cur->_bf == -1)
{
//右单旋
RotateR(parent);
}
else if (cur->_bf == 1)
{
//双旋:先左单旋再右单旋
RotateLR(parent);
}
}
//旋转完成后,parent所在树的高度恢复到了插入节点之前的高度
//如果parent所在树是子树,也不会对上层有影响,因此不再更新上层的平衡因子了
break;
}
}
return true;
}
AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分两步:
1.验证其为二叉搜索树
2.验证其为平衡树
void InOrder()
{
_InOrder(_root);
}
bool IsBalance()
{
return _IsBalance(_root);
}
bool _IsBalance(Node* root)
{
if (root == nullptr)
{
return true;
}
int leftHeight = Height(root->_left);
int rightHeight = Height(root->_right);
return abs(leftHeight - rightHeight) < 2
&& _IsBalance(root->_left)
&& _IsBalance(root->_right);
}
int Height(Node* root)
{
if (root == nullptr)
{
return 0;
}
int leftHeight = Height(root->_left);
int rightHeight = Height(root->_right);
return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
}
void _InOrder(Node* root)
{
if (root == nullptr)
{
return;
}
_InOrder(root->_left);
cout << root->_kv.first << ":" << root->_kv.second << endl;
_InOrder(root->_right);
}
因为AVL树也是二叉搜索树,可按照二叉搜索树的方式将节点删除,然后再更新平衡因子,只不过与删除不同的是,删除节点后的平衡因子更新,最差情况下一直要调整到根节点的位置。
AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即 O(log2N) 。但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。
#include
using namespace std;
template<class K, class V>
struct AVLTreeNode
{
AVLTreeNode<K, V>* _left; //左孩子
AVLTreeNode<K, V>* _right; //右孩子
AVLTreeNode<K, V>* _parent;//双亲
pair<K, V> _kv;
int _bf; //平衡因子
AVLTreeNode(const pair<K, V>& kv)
: _left(nullptr)
, _right(nullptr)
, _parent(nullptr)
, _kv(kv)
, _bf(0)
{}
};
template<class K, class V>
class AVLTree
{
typedef AVLTreeNode<K, V> Node;
public:
bool Insert(const pair<K, V>& kv)
{
if (_root == nullptr)
{
_root = new Node(kv);
return true;
}
Node* cur = _root;
Node* parent = nullptr;
while (cur)
{
if (kv.first >= cur->_kv.first)
{
parent = cur;
cur = cur->_right;
}
else if (kv.first < cur->_kv.first)
{
parent = cur;
cur = cur->_left;
}
else
{
return false;
}
}
cur = new Node(kv);
if (kv.first > parent->_kv.first)
{
parent->_right = cur;
cur->_parent = parent;
}
else
{
parent->_left = cur;
cur->_parent = parent;
}
//更新平衡因子以及AVL树的旋转
while (parent)
{
//更新双亲的平衡因子
if (cur == parent->_right)
{
parent->_bf++;
}
else
{
parent->_bf--;
}
//检测双亲的平衡因子是否满足(0,-1,1)
if (parent->_bf == 0)
{
break;
}
else if (parent->_bf == 1 || parent->_bf == -1)
{
//继续向上调整parent,更新并检测平衡因子
cur = parent;
parent = parent->_parent;
}
else if (parent->_bf == 2 || parent->_bf == -2)
{
//双亲的平衡因子为正负2,违反了AVL树的平衡性,需要对以Parent为根的树进行旋转处理
if (parent->_bf == 2)
{
if (cur->_bf == 1)
{
//左单旋
RotateL(parent);
}
else if (cur->_bf == -1)
{
//双旋:先右单旋再左单旋
RotateRL(parent);
}
}
else if (parent->_bf == -2)
{
if (cur->_bf == -1)
{
//右单旋
RotateR(parent);
}
else if (cur->_bf == 1)
{
//双旋:先左单旋再右单旋
RotateLR(parent);
}
}
//旋转完成后,parent所在树的高度恢复到了插入节点之前的高度
//如果parent所在树是子树,也不会对上层有影响,因此不再更新上层的平衡因子了
break;
}
}
return true;
}
void InOrder()
{
_InOrder(_root);
}
bool IsBalance()
{
return _IsBalance(_root);
}
bool _IsBalance(Node* root)
{
if (root == nullptr)
{
return true;
}
int leftHeight = Height(root->_left);
int rightHeight = Height(root->_right);
return abs(leftHeight - rightHeight) < 2
&& _IsBalance(root->_left)
&& _IsBalance(root->_right);
}
int Height(Node* root)
{
if (root == nullptr)
{
return 0;
}
int leftHeight = Height(root->_left);
int rightHeight = Height(root->_right);
return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
}
void _InOrder(Node* root)
{
if (root == nullptr)
{
return;
}
_InOrder(root->_left);
cout << root->_kv.first << ":" << root->_kv.second << endl;
_InOrder(root->_right);
}
//左单旋
void RotateL(Node* parent)
{
Node* pParent = parent->_parent;
Node* subR = parent->_right;
Node* subRL = subR->_left;
parent->_right = subRL;
if (subRL)
{
subRL->_parent = parent;
}
subR->_left = parent;
parent->_parent = subR;
if (_root == parent)
{
_root = subR;
subR->_parent = nullptr;
}
else
{
if (parent == pParent->_left)
{
pParent->_left = subR;
}
else
{
pParent->_right = subR;
}
subR->_parent = pParent;
}
parent->_bf = subR->_bf = 0;
}
//右单旋
void RotateR(Node* parent)
{
Node* pParent = parent->_parent;
Node* subL = parent->_left;
Node* subLR = subL->_right;
parent->_left = subLR;
if (subLR)
{
subLR->_parent = parent;
}
subL->_right = parent;
parent->_parent = subL;
if (_root == parent)
{
_root = subL;
subL->_parent = nullptr;
}
else
{
if (parent == pParent->_left)
{
pParent->_left = subL;
}
else
{
pParent->_right = subL;
}
subL->_parent = pParent;
}
parent->_bf = subL->_bf = 0;
}
//双旋:先右单旋再左单旋
void RotateRL(Node* parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
int bf = subRL->_bf;
RotateR(parent->_right);
RotateL(parent);
//画图理解平衡因子的调节
if (bf == 1)
{
parent->_bf = -1;
subR->_bf = 0;
subRL->_bf = 0;
}
else if (bf == -1)
{
parent->_bf = 0;
subR->_bf = 1;
subRL->_bf = 0;
}
else if (bf == 0)
{
parent->_bf = subR->_bf = subRL->_bf = 0;
}
}
//双旋:先左单旋再右单旋
void RotateLR(Node* parent)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
int bf = subLR->_bf;
RotateL(parent->_left);
RotateR(parent);
//画图理解平衡因子的调节
if (bf == 1)
{
parent->_bf = 0;
subL->_bf = -1;
subLR->_bf = 0;
}
else if (bf == -1)
{
parent->_bf = 1;
subL->_bf = 0;
subLR->_bf = 0;
}
else if (bf == 0)
{
parent->_bf = subL->_bf = subLR->_bf = 0;
}
}
private:
Node* _root = nullptr;
};
测试用例
void Test()
{
int arr[] = { 16, 3, 7, 11, 9, 26, 18, 14, 15 };
AVLTree<int, int> t;
for (auto e : arr)
{
t.Insert(make_pair(e, e));
}
t.InOrder();
bool ret = t.IsBalance();
if (ret)
{
cout << "AVLTree is balance" << endl;
}
else
{
cout << "AVLTree is not balance" << endl;
}
}