1️⃣大数据开发笔记(一):HDFS介绍 |
2️⃣大数据开发笔记(二):Yarn分布式集群操作系统 |
3️⃣大数据开发笔记(三):Mapreduce |
4️⃣大数据开发笔记(四):Hive数据仓库 |
➡️大数据开发笔记(四):Hive数据仓库 |
➡️大数据开发笔记(四):Hive数仓调优 |
5️⃣大数据开发笔记(五):Zookeeper |
6️⃣大数据开发笔记(六):Flume基础学习 |
7️⃣大数据开发笔记(七):Kafka分布式流式处理 |
8️⃣大数据开发笔记(八):Spark综合总结及Sparksql |
9️⃣大数据开发笔记(九):Flink基础 |
➡️大数据开发笔记(九):Flink综合学习 |
大数据开发笔记(十):Hbase列存储数据库总结 |
➡️大数据开发笔记(十):Hbase实践 |
(要求先配置好hadoop环境,版本hadoop2皆可,先启动zookeeper)
文件下载链接:https://pan.baidu.com/s/1W-WMer8WDyOqt-N_RU7bXg 提取码:1234
(1)安装zookeeper(zookeeper-3.4.5)
首先,将zoo_sample.cfg改名为zoo.cfg(要求所有机器保持一致)
server.0=master:8880:7770
server.1=slave1:8881:7771
server.2=slave2:8882:7772
然后,zookeeper根目录创建myid(每个机器独立分配,不能重复)
启动,]# ./bin/zkServer.sh start
检查:]# ./bin/zkServer.sh status
首先:hbase-env.sh设置环境变量
export JAVA_HOME=/usr/local/src/jdk1.8.0_172
export HBASE_MANAGES_ZK=false #用第三方
修改hbase-site.xml
接下来,创建regionservers文件,里面存储regionserver的master地址
1 slave1
2 slave2
将这些配置分发拷贝到其他节点(scp)
启动 ./bin/start-hbase.sh
(1)在主节点看到HMaster进程,在从节点看到HRegionServer进程
(2)]# hbase shell,进入终端执行status,查看状态
(3)web UI:192.168.179.10:60010
list查看有哪些表格
删除表格:
> disable "m_table"
> drop "m_table"
创建表格:
> create 'm_table', 'meta_data', 'action'
查看数据(全表扫描)——不建议直接用
> scan "m_table"
增加cf:
> alter "m_table", {NAME=>'cf_new'}
删除cf:
> alter "m_table", {NAME=>'cf_new', METHOD=>'delete'}
查看表格有多少条记录:
> count "m_table"
删掉一条记录
delete "m_table", "user|4001", "meta_data:name"
写数据:
put "m_table", '1002', 'meta_data:name', 'li4'
put "m_table", '1001', 'meta_data:age', '18'
put "m_table", '1002', 'meta_data:gender', 'man'
查看数据
逐条读:get "m_table", '1002'
get "m_table", '1002', 'meta_data:name'
批量读:scan "m_table"
(1)找zhang3,值
--通过明确的value,反查记录
scan "m_table", FILTER=>"ValueFilter(=, 'binary:zhang3')"
scan "m_table", FILTER=>"ValueFilter(=, 'binary:wang5')"
(2)找包含‘a’的value
--通过value漫匹配,反查记录
scan "m_table", FILTER=>"ValueFilter(=, 'substring:a')"
(3)列名匹配
两个条件同时限制,对列明的前缀做校验
scan "m_table", FILTER=>"ColumnPrefixFilter('na') AND ValueFilter(=, 'substring:zhang3')"
scan "m_table", FILTER=>"ColumnPrefixFilter('na')
put "m_table", '3001', 'meta_data:name', '777'
(4)rowkey匹配---查询rowkey prefix的方式:
以10开头:
> scan "m_table", FILTER=>"PrefixFilter('10')"
指定rowkey的范围,rowkey之后的数据
> scan "m_table", {STARTROW=>'1002'}
> scan "m_table", {STARTROW=>'1002', FILTER=>"PrefixFilter('10')"}
修改版本号:
> alter "m_table", {NAME=>'meta_data', VERSIONS => 3}
put "m_table", '1001', 'meta_data:name', 'wang5'
put "m_table", '1001', 'meta_data:name', 'zhao6'
put "m_table", '1001', 'meta_data:name', 'heng7'
get "m_table", '1001'
指定版本号读取:
get "m_table", '1001', {COLUMN=>"meta_data:name", VERSIONS => 1}
get "m_table", '1001', {COLUMN=>"meta_data:name", VERSIONS => 2}
> get "m_table", '1001', {COLUMN=>"meta_data:name", VERSIONS => 3}
get "m_table", '1001', {COLUMN=>"meta_data:name", TIMESTAMP=>1573349851782}
get "m_table", '1001', {COLUMN=>"meta_data:name", TIMESTAMP=>1573349547463}
1.行正则
import org.apache.hadoop.hbase.filter.RegexStringComparator
import org.apache.hadoop.hbase.filter.CompareFilter
import org.apache.hadoop.hbase.filter.SubstringComparator
import org.apache.hadoop.hbase.filter.RowFilter
scan 'm_table', {FILTER => RowFilter.new(CompareFilter::CompareOp.valueOf('EQUAL'),RegexStringComparator.new('^10'))}
2.值正则:
import org.apache.hadoop.hbase.filter.CompareFilter
import org.apache.hadoop.hbase.filter.SingleColumnValueFilter
import org.apache.hadoop.hbase.filter.SubstringComparator
scan "m_table", {FILTER=>RowFilter.new(CompareFilter::CompareOp.valueOf('EQUAL'), RegexStringComparator.new('^user\|\d+$'))}
值正则:
scan 'm_table', {COLUMNS => 'meta_data:name', FILTER => SingleColumnValueFilter.new(Bytes.toBytes('meta_data'),Bytes.toBytes('name'),CompareFilter::CompareOp.valueOf('EQUAL'),Bytes.toBytes('zhang3'))}
清空词表
> truncate "m_table"
查看行数
> count 'm_table'