25、Flink 的table api与sql之函数(自定义函数示例)

Flink 系列文章

1、Flink 部署、概念介绍、source、transformation、sink使用示例、四大基石介绍和示例等系列综合文章链接

13、Flink 的table api与sql的基本概念、通用api介绍及入门示例
14、Flink 的table api与sql之数据类型: 内置数据类型以及它们的属性
15、Flink 的table api与sql之流式概念-详解的介绍了动态表、时间属性配置(如何处理更新结果)、时态表、流上的join、流上的确定性以及查询配置
16、Flink 的table api与sql之连接外部系统: 读写外部系统的连接器和格式以及FileSystem示例(1)
16、Flink 的table api与sql之连接外部系统: 读写外部系统的连接器和格式以及Elasticsearch示例(2)
16、Flink 的table api与sql之连接外部系统: 读写外部系统的连接器和格式以及Apache Kafka示例(3)
16、Flink 的table api与sql之连接外部系统: 读写外部系统的连接器和格式以及JDBC示例(4)
16、Flink 的table api与sql之连接外部系统: 读写外部系统的连接器和格式以及Apache Hive示例(6)
17、Flink 之Table API: Table API 支持的操作(1)
17、Flink 之Table API: Table API 支持的操作(2)
18、Flink的SQL 支持的操作和语法
19、Flink 的Table API 和 SQL 中的内置函数及示例(1)
19、Flink 的Table API 和 SQL 中的自定义函数及示例(2)
19、Flink 的Table API 和 SQL 中的自定义函数及示例(3)
19、Flink 的Table API 和 SQL 中的自定义函数及示例(4)
20、Flink SQL之SQL Client: 不用编写代码就可以尝试 Flink SQL,可以直接提交 SQL 任务到集群上

22、Flink 的table api与sql之创建表的DDL
24、Flink 的table api与sql之Catalogs(介绍、类型、java api和sql实现ddl、java api和sql操作catalog)-1
24、Flink 的table api与sql之Catalogs(java api操作数据库、表)-2
24、Flink 的table api与sql之Catalogs(java api操作视图)-3
24、Flink 的table api与sql之Catalogs(java api操作分区与函数)-4
25、Flink 的table api与sql之函数(自定义函数示例)
26、Flink 的SQL之概览与入门示例
27、Flink 的SQL之SELECT (select、where、distinct、order by、limit、集合操作和去重)介绍及详细示例(1)
27、Flink 的SQL之SELECT (SQL Hints 和 Joins)介绍及详细示例(2)
27、Flink 的SQL之SELECT (窗口函数)介绍及详细示例(3)
27、Flink 的SQL之SELECT (窗口聚合)介绍及详细示例(4)
27、Flink 的SQL之SELECT (Group Aggregation分组聚合、Over Aggregation Over聚合 和 Window Join 窗口关联)介绍及详细示例(5)
27、Flink 的SQL之SELECT (Top-N、Window Top-N 窗口 Top-N 和 Window Deduplication 窗口去重)介绍及详细示例(6)
27、Flink 的SQL之SELECT (Pattern Recognition 模式检测)介绍及详细示例(7)
28、Flink 的SQL之DROP 、ALTER 、INSERT 、ANALYZE 语句
29、Flink SQL之DESCRIBE、EXPLAIN、USE、SHOW、LOAD、UNLOAD、SET、RESET、JAR、JOB Statements、UPDATE、DELETE(1)
29、Flink SQL之DESCRIBE、EXPLAIN、USE、SHOW、LOAD、UNLOAD、SET、RESET、JAR、JOB Statements、UPDATE、DELETE(2)
30、Flink SQL之SQL 客户端(通过kafka和filesystem的例子介绍了配置文件使用-表、视图等)
32、Flink table api和SQL 之用户自定义 Sources & Sinks实现及详细示例
41、Flink之Hive 方言介绍及详细示例
42、Flink 的table api与sql之Hive Catalog
43、Flink之Hive 读写及详细验证示例
44、Flink之module模块介绍及使用示例和Flink SQL使用hive内置函数及自定义函数详细示例–网上有些说法好像是错误的


文章目录

  • Flink 系列文章
  • 一、自定义函数
    • 1、概述
    • 2、标量函数-自定义函数说明及示例
    • 3、表值函数-自定义函数说明及示例
    • 4、聚合函数
    • 5、表值聚合函数
      • 1)、示例1- 计算topN
      • 2)、示例2 - emitUpdateWithRetract 方法使用(老版本Planner可用)


本文介绍了自定义函数的分类以及四种自定义函数实现的例子。
本文依赖flink、kafka集群能正常使用。
本文分为5个部分,即自定义函数介绍、标量自定义函数、表值自定义函数、标量聚合函数和表值聚合函数的实现示例。
本文的示例如无特殊说明则是在Flink 1.17版本中运行。

一、自定义函数

自定义函数(UDF)是一种扩展开发机制,可以用来在查询语句里调用难以用其他方式表达的频繁使用或自定义的逻辑。

自定义函数可以用 JVM 语言(例如 Java 或 Scala)或 Python 实现,实现者可以在 UDF 中使用任意第三方库,本文聚焦于使用 JVM 语言开发自定义函数。

1、概述

当前 Flink 有如下几种函数:

  • 标量函数,将标量值转换成一个新标量值;
  • 表值函数,将标量值转换成新的行数据;
  • 聚合函数,将多行数据里的标量值转换成一个新标量值;
  • 表值聚合函数,将多行数据里的标量值转换成新的行数据;
  • 异步表值函数,是异步查询外部数据系统的特殊函数。

标量和表值函数已经使用了新的基于数据类型的类型系统,聚合函数仍然使用基于 TypeInformation 的旧类型系统。

2、标量函数-自定义函数说明及示例

自定义标量函数可以把 0 到多个标量值映射成 1 个标量值,数据类型里列出的任何数据类型都可作为求值方法的参数和返回值类型。

想要实现自定义标量函数,你需要扩展 org.apache.flink.table.functions 里面的 ScalarFunction 并且实现一个或者多个求值方法。标量函数的行为取决于你写的求值方法。

求值方法必须是 public 的,而且名字必须是 eval。

下面自定义函数是将balance加上(万元)以及求balance/age,仅仅示例如何使用,其运行结果在每次输出的代码后面注释的行。

import static org.apache.flink.table.api.Expressions.$;
import static org.apache.flink.table.api.Expressions.call;

import java.util.Arrays;
import java.util.List;

import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.annotation.DataTypeHint;
import org.apache.flink.table.annotation.InputGroup;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.functions.ScalarFunction;
import org.apache.flink.types.Row;

import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;

/**
 * @author alanchan
 *
 */
public class TestUDScalarFunctionDemo {

	@Data
	@NoArgsConstructor
	@AllArgsConstructor
	public static class User {
		private long id;
		private String name;
		private int age;
		private int balance;
		private Long rowtime;
	}

	final static List<User> userList = Arrays.asList(
			new User(1L, "alan", 18, 20,1698742358391L), 
			new User(2L, "alan", 19, 25,1698742359396L), 
			new User(3L, "alan", 25, 30,1698742360407L),
			new User(4L, "alanchan", 28,35, 1698742361409L), 
			new User(5L, "alanchan", 29, 35,1698742362424L)
			);

	public static class TestScalarFunction extends ScalarFunction {

		// 接受任意类型输入,返回 String 型输出
		public String eval(@DataTypeHint(inputGroup = InputGroup.ANY) Object o) {
			return o.toString() + " (万元)";
		}

		public double eval(Integer  age, Integer  balance) {
			return balance / age *1.0;
		}

	}

	/**
	 * @param args
	 * @throws Exception
	 */
	public static void main(String[] args) throws Exception {
		StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
		StreamTableEnvironment tenv = StreamTableEnvironment.create(env);

		DataStream<User> users = env.fromCollection(userList);
		Table usersTable = tenv.fromDataStream(users, $("id"), $("name"), $("age"),$("balance"), $("rowtime"));

		//1、 在 Table API 里不经注册直接“内联”调用函数
		Table result = usersTable.select($("id"), $("name"), call(TestScalarFunction.class, $("balance")));

		DataStream<Tuple2<Boolean, Row>> resultDS = tenv.toRetractStream(result, Row.class);
//		resultDS.print();
//		11> (true,+I[2, alan, 25 (万元)])
//		12> (true,+I[3, alan, 30 (万元)])
//		13> (true,+I[4, alanchan, 35 (万元)])
//		10> (true,+I[1, alan, 20 (万元)])
//		14> (true,+I[5, alanchan, 35 (万元)])

		Table result2 = usersTable.select($("id"), $("name"), $("age"), 
				call(TestScalarFunction.class, $("balance")), 
				call(TestScalarFunction.class, $("age"), $("balance"))
				);
		
		DataStream<Tuple2<Boolean, Row>> result2DS = tenv.toRetractStream(result2, Row.class);
//		result2DS.print();
//		9> (true,+I[2, alan, 19, 25 (万元), 1.0])
//		10> (true,+I[3, alan, 25, 30 (万元), 1.0])
//		12> (true,+I[5, alanchan, 29, 35 (万元), 1.0])
//		11> (true,+I[4, alanchan, 28, 35 (万元), 1.0])
//		8> (true,+I[1, alan, 18, 20 (万元), 1.0])
		
		//2、 注册函数
		tenv.createTemporarySystemFunction("TestScalarFunction", TestScalarFunction.class);
		// 在 Table API 里调用注册好的函数
		Table result3 = usersTable.select($("id"), $("name"),call("TestScalarFunction", $("balance")));
		
		DataStream<Tuple2<Boolean, Row>> result3DS = tenv.toRetractStream(result3, Row.class);
//		result3DS.print();
//		2> (true,+I[4, alanchan, 35 (万元)])
//		3> (true,+I[5, alanchan, 35 (万元)])
//		15> (true,+I[1, alan, 20 (万元)])
//		16> (true,+I[2, alan, 25 (万元)])
//		1> (true,+I[3, alan, 30 (万元)])
		
		// 在 SQL 里调用注册好的函数
		 tenv.createTemporaryView("user_view", users);
		
		Table result4 = tenv.sqlQuery("SELECT id,name,TestScalarFunction(balance) ,TestScalarFunction(age,balance) FROM user_view");
		
		DataStream<Tuple2<Boolean, Row>> result4DS = tenv.toRetractStream(result4, Row.class);
		result4DS.print();
//		14> (true,+I[1, alan, 20 (万元), 1.0])
//		1> (true,+I[4, alanchan, 35 (万元), 1.0])
//		2> (true,+I[5, alanchan, 35 (万元), 1.0])
//		15> (true,+I[2, alan, 25 (万元), 1.0])
//		16> (true,+I[3, alan, 30 (万元), 1.0])
		
		env.execute();
	}

}

3、表值函数-自定义函数说明及示例

跟自定义标量函数一样,自定义表值函数的输入参数也可以是 0 到多个标量。但是跟标量函数只能返回一个值不同的是,它可以返回任意多行。返回的每一行可以包含 1 到多列,如果输出行只包含 1 列,会省略结构化信息并生成标量值,这个标量值在运行阶段会隐式地包装进行里。

要定义一个表值函数,你需要扩展 org.apache.flink.table.functions 下的 TableFunction,可以通过实现多个名为 eval 的方法对求值方法进行重载。像其他函数一样,输入和输出类型也可以通过反射自动提取出来。表值函数返回的表的类型取决于 TableFunction 类的泛型参数 T,不同于标量函数,表值函数的求值方法本身不包含返回类型,而是通过 collect(T) 方法来发送要输出的行。

在 Table API 中,表值函数是通过 .joinLateral(…) 或者 .leftOuterJoinLateral(…) 来使用的。joinLateral 算子会把外表(算子左侧的表)的每一行跟跟表值函数返回的所有行(位于算子右侧)进行 (cross)join。leftOuterJoinLateral 算子也是把外表(算子左侧的表)的每一行跟表值函数返回的所有行(位于算子右侧)进行(cross)join,并且如果表值函数返回 0 行也会保留外表的这一行。

在 SQL 里面用 JOIN 或者 以 ON TRUE 为条件的 LEFT JOIN 来配合 LATERAL TABLE() 的使用。

下面示例中包含表值函数的四种应用方式。

import static org.apache.flink.table.api.Expressions.$;
import static org.apache.flink.table.api.Expressions.call;

import java.util.Arrays;
import java.util.List;

import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.annotation.DataTypeHint;
import org.apache.flink.table.annotation.FunctionHint;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.functions.TableFunction;
import org.apache.flink.types.Row;

import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;

/**
 * @author alanchan
 *
 */
public class TestUDTableFunctionDemo {

	@Data
	@NoArgsConstructor
	@AllArgsConstructor
	public static class User {
		private long id;
		private String name;
		private int age;
		private int balance;
		private Long rowtime;
	}

	final static List<User> userList = Arrays.asList(
			new User(1L, "alan,chen", 18, 20,1698742358391L), 
			new User(2L, "alan,chen", 19, 25,1698742359396L), 
			new User(3L, "alan,chen", 25, 30,1698742360407L),
			new User(4L, "alan,chan", 28,35, 1698742361409L), 
			new User(5L, "alan,chan", 29, 35,1698742362424L)
			);
	
	@FunctionHint(output = @DataTypeHint("ROW"))
	public static class SplitFunction extends TableFunction<Row> {

		public void eval(String str) {
			String[] names = str.split(",");
			collect(Row.of(names[0],names[1]));
//			for (String s : str.split(", ")) {
//				// use collect(...) to emit a row
//				collect(Row.of(s, s.length()));
//			}
		}
	}
	
	@FunctionHint(output = @DataTypeHint("ROW"))
	public static class OverloadedFunction extends TableFunction<Row> {

		public void eval(String str) {
			String[] user = str.split(",");
			collect(Row.of(Integer.valueOf(user[0]),user[1],Integer.valueOf(user[2]),Integer.valueOf(user[3]),user[4]));
		}
	}

	/**
	 * @param args
	 * @throws Exception 
	 */
	public static void main(String[] args) throws Exception {
		StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
		StreamTableEnvironment tenv = StreamTableEnvironment.create(env);

		DataStream<User> users = env.fromCollection(userList);
		Table usersTable = tenv.fromDataStream(users, $("id"), $("name"), $("age"), $("balance"), $("rowtime"));

		// 1、 在 Table API 里不经注册直接“内联”调用函数
		Table result = usersTable
				 .joinLateral(call(SplitFunction.class, $("name")))
				.select($("id"), $("name"),$("firstName"),$("lastName"));

		DataStream<Tuple2<Boolean, Row>> resultDS = tenv.toRetractStream(result, Row.class);
//		resultDS.print();
//		11> (true,+I[5, alan,chan, alan, chan])
//		7> (true,+I[1, alan,chen, alan, chen])
//		9> (true,+I[3, alan,chen, alan, chen])
//		10> (true,+I[4, alan,chan, alan, chan])
//		8> (true,+I[2, alan,chen, alan, chen])
		
		DataStream<String> row = env.fromCollection(
				//id name age balance rowtime
				Arrays.asList(
						"11,alan,18,20,1699341167461",
						"12,alan,19,25,1699341168464",
						"13,alan,20,30,1699341169472",
						"14,alanchan,18,22,1699341170479",
						"15,alanchan,19,25,1699341171482"
						)
				);
		Table usersTable2 = tenv.fromDataStream(row, $("userString"));
		
		Table result2 = usersTable2
							 .joinLateral(call(OverloadedFunction.class, $("userString")))
							 .select($("userString"),$("id"),$("name"),$("age"),$("balance"),$("rowtime")
						 )	;	
						
		DataStream<Tuple2<Boolean, Row>> result2DS = tenv.toRetractStream(result2, Row.class);
//		result2DS.print();
//		15> (true,+I[15,alanchan,19,25,1699341171482, 15, alanchan, 19, 25, 1699341171482])
//		13> (true,+I[13,alan,20,30,1699341169472, 13, alan, 20, 30, 1699341169472])
//		14> (true,+I[14,alanchan,18,22,1699341170479, 14, alanchan, 18, 22, 1699341170479])
//		11> (true,+I[11,alan,18,20,1699341167461, 11, alan, 18, 20, 1699341167461])
//		12> (true,+I[12,alan,19,25,1699341168464, 12, alan, 19, 25, 1699341168464])
		
		Table result3 = usersTable2
				 .leftOuterJoinLateral(call(OverloadedFunction.class, $("userString")))
				 .select($("userString"),$("id"),$("name"),$("age"),$("balance"),$("rowtime")
			 )	;	
			
		DataStream<Tuple2<Boolean, Row>> result3DS = tenv.toRetractStream(result3, Row.class);
//		result3DS.print();
//		5> (true,+I[13,alan,20,30,1699341169472, 13, alan, 20, 30, 1699341169472])
//		6> (true,+I[14,alanchan,18,22,1699341170479, 14, alanchan, 18, 22, 1699341170479])
//		3> (true,+I[11,alan,18,20,1699341167461, 11, alan, 18, 20, 1699341167461])
//		4> (true,+I[12,alan,19,25,1699341168464, 12, alan, 19, 25, 1699341168464])
//		7> (true,+I[15,alanchan,19,25,1699341171482, 15, alanchan, 19, 25, 1699341171482])
		
		// 在 Table API 里重命名函数字段
		Table result4 = usersTable2
				 .leftOuterJoinLateral(call(OverloadedFunction.class, $("userString")).as("t_id","t_name","t_age","t_balance","t_rowtime"))
				 .select($("userString"),$("t_id"),$("t_name"),$("t_age"),$("t_balance"),$("t_rowtime")
			 )	;	
			
		DataStream<Tuple2<Boolean, Row>> result4DS = tenv.toRetractStream(result4, Row.class);
//		result4DS.print();
//		10> (true,+I[11,alan,18,20,1699341167461, 11, alan, 18, 20, 1699341167461])
//		13> (true,+I[14,alanchan,18,22,1699341170479, 14, alanchan, 18, 22, 1699341170479])
//		14> (true,+I[15,alanchan,19,25,1699341171482, 15, alanchan, 19, 25, 1699341171482])
//		12> (true,+I[13,alan,20,30,1699341169472, 13, alan, 20, 30, 1699341169472])
//		11> (true,+I[12,alan,19,25,1699341168464, 12, alan, 19, 25, 1699341168464])
		
		//2、 注册函数
		tenv.createTemporarySystemFunction("OverloadedFunction", OverloadedFunction.class);
		
		// 在 Table API 里调用注册好的函数
		Table result5 = usersTable2
				 .leftOuterJoinLateral(call("OverloadedFunction", $("userString")).as("t_id","t_name","t_age","t_balance","t_rowtime"))
				 .select($("userString"),$("t_id"),$("t_name"),$("t_age"),$("t_balance"),$("t_rowtime")
			 )	;	
			
		DataStream<Tuple2<Boolean, Row>> result5DS = tenv.toRetractStream(result5, Row.class);
//		result5DS.print();
//		11> (true,+I[11,alan,18,20,1699341167461, 11, alan, 18, 20, 1699341167461])
//		14> (true,+I[14,alanchan,18,22,1699341170479, 14, alanchan, 18, 22, 1699341170479])
//		15> (true,+I[15,alanchan,19,25,1699341171482, 15, alanchan, 19, 25, 1699341171482])
//		13> (true,+I[13,alan,20,30,1699341169472, 13, alan, 20, 30, 1699341169472])
//		12> (true,+I[12,alan,19,25,1699341168464, 12, alan, 19, 25, 1699341168464])
		
		Table result6 = usersTable2
				 .joinLateral(call("OverloadedFunction", $("userString")).as("t_id","t_name","t_age","t_balance","t_rowtime"))
				 .select($("userString"),$("t_id"),$("t_name"),$("t_age"),$("t_balance"),$("t_rowtime")
			 )	;	
			
		DataStream<Tuple2<Boolean, Row>> result6DS = tenv.toRetractStream(result6, Row.class);
//		result6DS.print();
//		8> (true,+I[14,alanchan,18,22,1699341170479, 14, alanchan, 18, 22, 1699341170479])
//		9> (true,+I[15,alanchan,19,25,1699341171482, 15, alanchan, 19, 25, 1699341171482])
//		5> (true,+I[11,alan,18,20,1699341167461, 11, alan, 18, 20, 1699341167461])
//		7> (true,+I[13,alan,20,30,1699341169472, 13, alan, 20, 30, 1699341169472])
//		6> (true,+I[12,alan,19,25,1699341168464, 12, alan, 19, 25, 1699341168464])
		
		//3、 在 SQL 里调用注册好的函数
		 tenv.createTemporaryView("user_view", usersTable2);
		 Table result7 =  tenv.sqlQuery(
				  "SELECT userString, id,name,age,balance,rowtime " +
				  "FROM user_view, LATERAL TABLE(OverloadedFunction(userString))");
			DataStream<Tuple2<Boolean, Row>> result7DS = tenv.toRetractStream(result7, Row.class);
//			result7DS.print();
//			15> (true,+I[13,alan,20,30,1699341169472, 13, alan, 20, 30, 1699341169472])
//			13> (true,+I[11,alan,18,20,1699341167461, 11, alan, 18, 20, 1699341167461])
//			1> (true,+I[15,alanchan,19,25,1699341171482, 15, alanchan, 19, 25, 1699341171482])
//			14> (true,+I[12,alan,19,25,1699341168464, 12, alan, 19, 25, 1699341168464])
//			16> (true,+I[14,alanchan,18,22,1699341170479, 14, alanchan, 18, 22, 1699341170479])
		
			 Table result8 =  tenv.sqlQuery(
					  "SELECT userString, id,name,age,balance,rowtime " +
					  "FROM user_view "+
					  " LEFT JOIN LATERAL TABLE( OverloadedFunction(userString)) ON TRUE  "  );
				DataStream<Tuple2<Boolean, Row>> result8DS = tenv.toRetractStream(result8, Row.class);
//				result8DS.print();
//				13> (true,+I[11,alan,18,20,1699341167461, 11, alan, 18, 20, 1699341167461])
//				1> (true,+I[15,alanchan,19,25,1699341171482, 15, alanchan, 19, 25, 1699341171482])
//				15> (true,+I[13,alan,20,30,1699341169472, 13, alan, 20, 30, 1699341169472])
//				14> (true,+I[12,alan,19,25,1699341168464, 12, alan, 19, 25, 1699341168464])
//				16> (true,+I[14,alanchan,18,22,1699341170479, 14, alanchan, 18, 22, 1699341170479])
			
				//4、 在 SQL 里重命名函数字段
				 Table result9 =  tenv.sqlQuery(
						  "SELECT userString, t_id, t_name,t_age,t_balance,t_rowtime " +
						  "FROM user_view "+
						 "LEFT JOIN LATERAL TABLE(OverloadedFunction(userString)) AS T(t_id, t_name,t_age,t_balance,t_rowtime) ON TRUE");
					DataStream<Tuple2<Boolean, Row>> result9DS = tenv.toRetractStream(result9, Row.class);
					result9DS.print();
//					7> (true,+I[12,alan,19,25,1699341168464, 12, alan, 19, 25, 1699341168464])
//					10> (true,+I[15,alanchan,19,25,1699341171482, 15, alanchan, 19, 25, 1699341171482])
//					9> (true,+I[14,alanchan,18,22,1699341170479, 14, alanchan, 18, 22, 1699341170479])
//					8> (true,+I[13,alan,20,30,1699341169472, 13, alan, 20, 30, 1699341169472])
//					6> (true,+I[11,alan,18,20,1699341167461, 11, alan, 18, 20, 1699341167461])
					
		env.execute();
		
	}

}

4、聚合函数

自定义聚合函数(UDAGG)是把一个表(一行或者多行,每行可以有一列或者多列)聚合成一个标量值。

该示例包含以下三个功能:

  • 定义一个聚合函数来计算某一列的加权平均
  • 在 TableEnvironment 中注册函数
  • 在查询中使用函数

为了计算加权平均值,accumulator 需要存储加权总和以及数据的条数。
在例子里,定义了一个类 Aalan_WeightedAvgAccum 来作为 accumulator。Flink 的 checkpoint 机制会自动保存 accumulator,在失败时进行恢复,以此来保证精确一次的语义。

例子的WeightedAvgAggregateFunction(自定义聚合函数)的 accumulate 方法有三个输入参数。
第一个是 Aalan_WeightedAvgAccum accumulator
另外两个是用户自定义的输入:输入的值 ivalue(balance) 和 输入的权重 iweight(age)。

尽管 retract()、merge()、resetAccumulator() 这几个方法在大多数聚合类型中都不是必须实现的,样例中提供了他们的实现。

在 Scala 样例中也是用的是 Java 的基础类型,并且定义了 getResultType() 和 getAccumulatorType(),因为 Flink 的类型推导对于 Scala 的类型推导做的不是很好。

import static org.apache.flink.table.api.Expressions.$;

import java.util.Arrays;
import java.util.Iterator;
import java.util.List;

import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.functions.AggregateFunction;
import org.apache.flink.types.Row;

import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;

/**
 * @author alanchan
 *
 */
public class TestUDAGGDemo {

	// 加权平均累加器bean,加上名称,以示区别,避免混淆
	public static class Aalan_WeightedAvgAccum {
		public long sum = 0;
		public int count = 0;
	}

	// 聚合函数的自定义实现,计算加权平均
	public static class WeightedAvgAggregateFunction extends AggregateFunction<Long, Aalan_WeightedAvgAccum> {

		/**
		 * 创建和初始化aggregate function 的Accumulator 方法
		 */
		@Override
		public Aalan_WeightedAvgAccum createAccumulator() {
			return new Aalan_WeightedAvgAccum();
		}

		/**
		 * 每次应该具体化(materialized)聚合结果时调用。 返回的值可能是早期且不完整的结果(随着数据的到达而定期发出),也可能是聚合的最终结果。
		 */
		@Override
		public Long getValue(Aalan_WeightedAvgAccum acc) {
			if (acc.count == 0) {
				return null;
			} else {
				return acc.sum / acc.count;
			}
		}

		/**
		 * 处理输入值并更新提供的累加器实例。方法accumulate 可以用不同的自定义类型和参数重载。聚合函数至少需要一个accumulate()方法。
		 * 
		 * @param acc     累加器bean,包含当前汇总结果的累加器
		 * @param iValue  输入的需要的累加值
		 * @param iWeight 输入的需要累加的值的权重
		 */
		public void accumulate(Aalan_WeightedAvgAccum acc, long iValue, int iWeight) {
			acc.sum += iValue * iWeight;
			acc.count += iWeight;
		}

		/**
		 * 收回累加器实例中的输入值。当前设计假设输入是先前累积的值。收回方法可以是重载了不同的自定义类型和参数。 此功能在datastream的有界流基于over
		 * aggregate必须被实现。
		 * 
		 * @param acc     累加器bean,包含当前汇总结果的累加器
		 * @param iValue  输入的需要的累加值
		 * @param iWeight 输入的需要累加的值的权重
		 */
		public void retract(Aalan_WeightedAvgAccum acc, long iValue, int iWeight) {
			acc.sum -= iValue * iWeight;
			acc.count -= iWeight;
		}

		/**
		 * 将一组accumulator 实例合并为一个accumulator 实例。 该函数在datastream session window的分组聚合 和
		 * 有界流的分组聚合必须实现。
		 * 
		 * @param acc 累加器,用于保存合并后的聚合结果。 应该注意的是,累加器可以包含先前的聚合结果。 因此,用户不应在自定义合并方法中替换或清除此实例。
		 * @param it  指向将被合并的一组累加器的Iterable。
		 */
		public void merge(Aalan_WeightedAvgAccum acc, Iterable<Aalan_WeightedAvgAccum> it) {
			Iterator<Aalan_WeightedAvgAccum> iter = it.iterator();
			while (iter.hasNext()) {
				Aalan_WeightedAvgAccum a = iter.next();
				acc.count += a.count;
				acc.sum += a.sum;
			}
		}

		/**
		 * 重置此[[AggregateFunction]]的累加器。必须为有界分组聚合实现此函数。
		 * 
		 * @param acc
		 */
		public void resetAccumulator(Aalan_WeightedAvgAccum acc) {
			acc.count = 0;
			acc.sum = 0L;
		}
	}

	@Data
	@NoArgsConstructor
	@AllArgsConstructor
	public static class User {
		private long id;
		private String name;
		private int age;
		private long balance;
		private Long rowtime;
	}

	final static List<User> userList = Arrays.asList(
			new User(1L, "alan", 18, 20, 1698742358391L), 
			new User(2L, "alan", 19, 25, 1698742359396L),
			new User(3L, "alan", 25, 30, 1698742360407L), 
			new User(4L, "alanchan", 28, 35, 1698742361409L), 
			new User(5L, "alanchan", 29, 35, 1698742362424L)
			);

	public static void main(String[] args) throws Exception {
		StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
		StreamTableEnvironment tenv = StreamTableEnvironment.create(env);

		// 将聚合函数注册为函数
		tenv.registerFunction("alan_weightavgAF", new WeightedAvgAggregateFunction());

		DataStream<User> users = env.fromCollection(userList);
		Table usersTable = tenv.fromDataStream(users, $("id"), $("name"), $("age"), $("balance"), $("rowtime"));

		tenv.createTemporaryView("user_view", users);

		// 使用函数
		String sql = "SELECT name, alan_weightavgAF(balance, age) AS avgPoints FROM user_view GROUP BY name";
		Table result = tenv.sqlQuery(sql);

		DataStream<Tuple2<Boolean, Row>> resultDS = tenv.toRetractStream(result, Row.class);
		resultDS.print();
//		16> (true,+I[alanchan, 35])
//		2> (true,+I[alan, 20])
//		2> (false,-U[alan, 20])
//		2> (true,+U[alan, 22])
//		2> (false,-U[alan, 22])
//		2> (true,+U[alan, 25])

		env.execute();
	}

}

5、表值聚合函数

自定义表值聚合函数(UDTAGG)可以把一个表(一行或者多行,每行有一列或者多列)聚合成另一张表,结果中可以有多行多列。

1)、示例1- 计算topN

下面的例子展示了如何

  • 定义一个 TableAggregateFunction 来计算给定列的最大的 3 个值
  • 在 TableEnvironment 中注册函数
  • 在 Table API 查询中使用函数(当前只在 Table API 中支持 TableAggregateFunction)

为了计算最大的 3 个值,accumulator 需要保存当前看到的最大的 3 个值。
在例子中,定义了类 TopAccum 来作为 accumulator。Flink 的 checkpoint 机制会自动保存 accumulator,并且在失败时进行恢复,来保证精确一次的语义。

TopTableAggregateFunction 表值聚合函数(TableAggregateFunction)的 accumulate() 方法有两个输入,
第一个是 TopAccum accumulator,
另一个是用户定义的输入:输入的值 v。

尽管 merge() 方法在大多数聚合类型中不是必须的,也在样例中提供了它的实现。

在 Scala 样例中也使用的是 Java 的基础类型,并且定义了 getResultType() 和 getAccumulatorType() 方法,因为 Flink 的类型推导对于 Scala 的类型推导支持的不是很好。

import static org.apache.flink.table.api.Expressions.$;
import static org.apache.flink.table.api.Expressions.call;

import java.util.Arrays;
import java.util.List;

import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.functions.TableAggregateFunction;
import org.apache.flink.types.Row;
import org.apache.flink.util.Collector;

import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;

/**
 * @author alanchan
 *
 */
public class TestUDTAGGDemo {

	/**
	 * Accumulator for Top3
	 *
	 */
	@Data
	public static class TopAccum {
		public Integer first;
		public Integer second;
		public Integer third;
	}

	public static class TopTableAggregateFunction extends TableAggregateFunction<Tuple2<Integer, Integer>, TopAccum> {
		@Override
		public TopAccum createAccumulator() {
			TopAccum acc = new TopAccum();
			acc.first = Integer.MIN_VALUE;
			acc.second = Integer.MIN_VALUE;
			acc.third = Integer.MIN_VALUE;
			return acc;
		}

		public void accumulate(TopAccum acc, Integer v) {
			if (v > acc.first) {
				acc.third = acc.second;
				acc.second = acc.first;
				acc.first = v;
			} else if (v > acc.second) {
				acc.third = acc.second;
				acc.second = v;
			} else if (v > acc.third) {
				acc.third = v;
			}

		}

		public void merge(TopAccum acc, java.lang.Iterable<TopAccum> iterable) {
			for (TopAccum otherAcc : iterable) {
				accumulate(acc, otherAcc.first);
				accumulate(acc, otherAcc.second);
				accumulate(acc, otherAcc.third);
			}
		}

		public void emitValue(TopAccum acc, Collector<Tuple2<Integer, Integer>> out) {
//			System.out.println("acc:"+acc);
			// emit the value and rank
			if (acc.first != Integer.MIN_VALUE) {
				out.collect(Tuple2.of(acc.first, 1));
			}
			if (acc.second != Integer.MIN_VALUE) {
				out.collect(Tuple2.of(acc.second, 2));
			}
			if (acc.third != Integer.MIN_VALUE) {
				out.collect(Tuple2.of(acc.third, 3));
			}
		}
	}

	@Data
	@NoArgsConstructor
	@AllArgsConstructor
	public static class User {
		private long id;
		private String name;
		private int age;
		private int balance;
		private Long rowtime;
	}

	final static List<User> userList = Arrays.asList(
			new User(1L, "alan", 18, 20, 1698742358391L), 
			new User(2L, "alan", 19, 25, 1698742359396L),
			new User(3L, "alan", 25, 30, 1698742360407L), 
			new User(4L, "alanchan", 28, 35, 1698742361409L), 
			new User(5L, "alanchan", 29, 35, 1698742362424L)
			);

	public static void main(String[] args) throws Exception {
		StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
		StreamTableEnvironment tenv = StreamTableEnvironment.create(env);

		// 将聚合函数注册为函数
		tenv.registerFunction("top", new TopTableAggregateFunction());

		DataStream<User> users = env.fromCollection(userList);
		Table usersTable = tenv.fromDataStream(users, $("id"), $("name"), $("age"), $("balance"), $("rowtime"));

		// 使用函数
		Table result = usersTable
						.groupBy($("name"))
						.flatAggregate(call("top", $("balance")))
						.select($("name"), $("f0").as("balance"), $("f1").as("rank"));

		DataStream<Tuple2<Boolean, Row>> resultDS = tenv.toRetractStream(result, Row.class);
		resultDS.print();
//		2> (true,+I[alan, 20, 1])
//		16> (true,+I[alanchan, 35, 1])
//		2> (false,-D[alan, 20, 1])
//		16> (false,-D[alanchan, 35, 1])
//		2> (true,+I[alan, 25, 1])
//		16> (true,+I[alanchan, 35, 1])
//		2> (true,+I[alan, 20, 2])
//		16> (true,+I[alanchan, 35, 2])
//		2> (false,-D[alan, 25, 1])
//		2> (false,-D[alan, 20, 2])
//		2> (true,+I[alan, 30, 1])
//		2> (true,+I[alan, 25, 2])
//		2> (true,+I[alan, 20, 3])

		env.execute();
	}

}

2)、示例2 - emitUpdateWithRetract 方法使用(老版本Planner可用)

下面的例子展示了如何使用 emitUpdateWithRetract 方法来只发送更新的数据。
为了只发送更新的结果,accumulator 保存了上一次的最大的3个值,也保存了当前最大的3个值。

如果 TopN 中的 n 非常大,这种既保存上次的结果,也保存当前的结果的方式不太高效。

一种解决这种问题的方式是把输入数据直接存储到 accumulator 中,然后在调用 emitUpdateWithRetract 方法时再进行计算。

需要特别说明的是

下面的示例需要使用到useOldPlanner,对应的planner的maven依赖见下文


      <dependency>
          <groupId>org.apache.flinkgroupId>
          <artifactId>flink-table-planner_2.11artifactId>
          <version>1.13.6version>
      dependency>

如果flink的版本比较高的话,下面的示例将不能运行,因为新版本的Builder没有useOldPlanner()方法了,已经移除。不能构造EnvironmentSettings.newInstance().useOldPlanner().inStreamingMode().build();

		//新版本该方法已经被移除
        @Deprecated
        public Builder useOldPlanner() {
            this.plannerClass = OLD_PLANNER_FACTORY;
            this.executorClass = OLD_EXECUTOR_FACTORY;
            return this;
        }

如果使用OldPlanner的话,emitValue和emitUpdateWithRetract仅需定义一个就可以了,并且emitUpdateWithRetract的优先级大于emitValue。但是在Blink Planner里,只看有没有定义emitValue。

也即在Blink Planner中,只能使用emitValue,不能使用emitUpdateWithRetract。
否则会报如下异常
Exception in thread “main” org.apache.flink.table.api.ValidationException: Could not find an implementation method ‘emitValue’ in class ‘org.tablesql.udf.TestUDTAGGDemo2$TopNTableAggregateFunction’ for function ‘TopNTableAggregateFunction’ that matches the following signature:

void emitValue(org.tablesql.udf.TestUDTAGGDemo2.TopNAccum, org.apache.flink.util.Collector)

具体示例如下


import static org.apache.flink.table.api.Expressions.$;
import static org.apache.flink.table.api.Expressions.call;

import java.util.Arrays;
import java.util.List;

import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.EnvironmentSettings;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.functions.TableAggregateFunction;
import org.apache.flink.types.Row;

import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;

/**
 * @author alanchan
 *
 */
public class TestUDTAGGDemo2 {

	@Data
	public static class TopNAccum {
		public Integer first;
		public Integer second;
		public Integer third;
		public Integer oldFirst;
		public Integer oldSecond;
		public Integer oldThird;

	}

	/**
	 * 自定义聚合函数实现
	 * 
	 * @author alanchan
	 *
	 */
	public static class TopNTableAggregateFunction extends TableAggregateFunction<Tuple2<Integer, Integer>, TopNAccum> {

		@Override
		public TopNAccum createAccumulator() {

			TopNAccum topNAccum = new TopNAccum();
			topNAccum.first = Integer.MIN_VALUE;
			topNAccum.second = Integer.MIN_VALUE;
			topNAccum.third = Integer.MIN_VALUE;
			topNAccum.oldFirst = Integer.MIN_VALUE;
			topNAccum.oldSecond = Integer.MIN_VALUE;
			topNAccum.oldThird = Integer.MIN_VALUE;
			return topNAccum;

		}

		public void accumulate(TopNAccum acc, Integer v) {

			if (v > acc.first) {
				acc.third = acc.second;
				acc.second = acc.first;
				acc.first = v;
			} else if (v > acc.second) {
				acc.third = acc.second;
				acc.second = v;
			} else if (v > acc.third) {
				acc.third = v;
			}

		}

		public void emitUpdateWithRetract(TopNAccum acc, RetractableCollector<Tuple2<Integer, Integer>> out) {
			System.out.println("emitUpdateWithRetract----acc:" + acc);
			if (!acc.first.equals(acc.oldFirst)) {
				// if there is an update, retract old value then emit new value.
				if (acc.oldFirst != Integer.MIN_VALUE) {
					out.retract(Tuple2.of(acc.oldFirst, 1));
				}
				out.collect(Tuple2.of(acc.first, 1));
				acc.oldFirst = acc.first;
			}

			if (!acc.second.equals(acc.oldSecond)) {
				// if there is an update, retract old value then emit new value.
				if (acc.oldSecond != Integer.MIN_VALUE) {
					out.retract(Tuple2.of(acc.oldSecond, 2));
				}
				out.collect(Tuple2.of(acc.second, 2));
				acc.oldSecond = acc.second;
			}

			if (!acc.third.equals(acc.oldThird)) {
				// if there is an update, retract old value then emit new value.
				if (acc.oldThird != Integer.MIN_VALUE) {
					out.retract(Tuple2.of(acc.oldThird, 3));
				}
				out.collect(Tuple2.of(acc.third, 3));
				acc.oldThird = acc.third;
			}

		}

	}

	@Data
	@NoArgsConstructor
	@AllArgsConstructor
	public static class User {
		private long id;
		private String name;
		private int age;
		private int balance;
		private Long rowtime;
	}

	final static List<User> userList = Arrays.asList(
			new User(1L, "alan", 18, 20, 1698742358391L), 
			new User(2L, "alan", 19, 25, 1698742359396L),
			new User(3L, "alan", 25, 30, 1698742360407L), 
			new User(11L, "alan", 28, 31, 1698742358391L), 
			new User(12L, "alan", 29, 32, 1698742359396L),
			new User(13L, "alan", 35, 35, 1698742360407L), 
			new User(23L, "alan", 45, 36, 1698742360407L), 
			new User(14L, "alanchan", 28, 15, 1698742361409L), 
			new User(15L, "alanchan", 29, 16, 1698742362424L), 
			new User(24L, "alanchan", 30, 20, 1698742361409L),
			new User(25L, "alanchan", 31, 22, 1698742362424L), 
			new User(34L, "alanchan", 32, 24, 1698742361409L), 
			new User(35L, "alanchan", 33, 26, 1698742362424L),
			new User(44L, "alanchan", 34, 28, 1698742361409L), 
			new User(55L, "alanchan", 35, 35, 1698742362424L));

	public static void main(String[] args) throws Exception {
		StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
//		env.setParallelism(1);

		EnvironmentSettings settings = EnvironmentSettings.newInstance().useOldPlanner().inStreamingMode().build();
		StreamTableEnvironment tenv = StreamTableEnvironment.create(env, settings);

		// 将聚合函数注册为函数
		tenv.registerFunction("topN", new TopNTableAggregateFunction());

		DataStream<User> users = env.fromCollection(userList);
		Table usersTable = tenv.fromDataStream(users, $("id"), $("name"), $("age"), $("balance"), $("rowtime"));

		// 使用函数
		Table result = usersTable.groupBy($("name")).flatAggregate(call("topN", $("balance"))).select($("name"), $("f0").as("balance"), $("f1").as("rank"));

		DataStream<Tuple2<Boolean, Row>> resultDS = tenv.toRetractStream(result, Row.class);
		resultDS.print();
		
		env.execute();
	}

}

运行结果如下:

emitUpdateWithRetract----acc:TestUDTAGGDemo2.TopNAccum(first=20, second=-2147483648, third=-2147483648, oldFirst=-2147483648, oldSecond=-2147483648, oldThird=-2147483648)
emitUpdateWithRetract----acc:TestUDTAGGDemo2.TopNAccum(first=15, second=-2147483648, third=-2147483648, oldFirst=-2147483648, oldSecond=-2147483648, oldThird=-2147483648)
14> (true,+I[alan, 20, 1])
9> (true,+I[alanchan, 15, 1])
emitUpdateWithRetract----acc:TestUDTAGGDemo2.TopNAccum(first=25, second=20, third=-2147483648, oldFirst=20, oldSecond=-2147483648, oldThird=-2147483648)
emitUpdateWithRetract----acc:TestUDTAGGDemo2.TopNAccum(first=16, second=15, third=-2147483648, oldFirst=15, oldSecond=-2147483648, oldThird=-2147483648)
14> (false,+I[alan, 20, 1])
14> (true,+I[alan, 25, 1])
14> (true,+I[alan, 20, 2])
9> (false,+I[alanchan, 15, 1])
emitUpdateWithRetract----acc:TestUDTAGGDemo2.TopNAccum(first=30, second=25, third=20, oldFirst=25, oldSecond=20, oldThird=-2147483648)
14> (false,+I[alan, 25, 1])
9> (true,+I[alanchan, 16, 1])
14> (true,+I[alan, 30, 1])
14> (false,+I[alan, 20, 2])
9> (true,+I[alanchan, 15, 2])
14> (true,+I[alan, 25, 2])
emitUpdateWithRetract----acc:TestUDTAGGDemo2.TopNAccum(first=20, second=16, third=15, oldFirst=16, oldSecond=15, oldThird=-2147483648)
14> (true,+I[alan, 20, 3])
9> (false,+I[alanchan, 16, 1])
emitUpdateWithRetract----acc:TestUDTAGGDemo2.TopNAccum(first=31, second=30, third=25, oldFirst=30, oldSecond=25, oldThird=20)
9> (true,+I[alanchan, 20, 1])
9> (false,+I[alanchan, 15, 2])
14> (false,+I[alan, 30, 1])
9> (true,+I[alanchan, 16, 2])
14> (true,+I[alan, 31, 1])
9> (true,+I[alanchan, 15, 3])
14> (false,+I[alan, 25, 2])
emitUpdateWithRetract----acc:TestUDTAGGDemo2.TopNAccum(first=22, second=20, third=16, oldFirst=20, oldSecond=16, oldThird=15)
14> (true,+I[alan, 30, 2])
9> (false,+I[alanchan, 20, 1])
14> (false,+I[alan, 20, 3])
9> (true,+I[alanchan, 22, 1])
14> (true,+I[alan, 25, 3])
9> (false,+I[alanchan, 16, 2])
emitUpdateWithRetract----acc:TestUDTAGGDemo2.TopNAccum(first=32, second=31, third=30, oldFirst=31, oldSecond=30, oldThird=25)
9> (true,+I[alanchan, 20, 2])
9> (false,+I[alanchan, 15, 3])
9> (true,+I[alanchan, 16, 3])
14> (false,+I[alan, 31, 1])
emitUpdateWithRetract----acc:TestUDTAGGDemo2.TopNAccum(first=24, second=22, third=20, oldFirst=22, oldSecond=20, oldThird=16)
14> (true,+I[alan, 32, 1])
9> (false,+I[alanchan, 22, 1])
14> (false,+I[alan, 30, 2])
9> (true,+I[alanchan, 24, 1])
9> (false,+I[alanchan, 20, 2])
14> (true,+I[alan, 31, 2])
9> (true,+I[alanchan, 22, 2])
14> (false,+I[alan, 25, 3])
9> (false,+I[alanchan, 16, 3])
14> (true,+I[alan, 30, 3])
emitUpdateWithRetract----acc:TestUDTAGGDemo2.TopNAccum(first=35, second=32, third=31, oldFirst=32, oldSecond=31, oldThird=30)
9> (true,+I[alanchan, 20, 3])
14> (false,+I[alan, 32, 1])
emitUpdateWithRetract----acc:TestUDTAGGDemo2.TopNAccum(first=26, second=24, third=22, oldFirst=24, oldSecond=22, oldThird=20)
14> (true,+I[alan, 35, 1])
9> (false,+I[alanchan, 24, 1])
14> (false,+I[alan, 31, 2])
9> (true,+I[alanchan, 26, 1])
14> (true,+I[alan, 32, 2])
9> (false,+I[alanchan, 22, 2])
14> (false,+I[alan, 30, 3])
9> (true,+I[alanchan, 24, 2])
14> (true,+I[alan, 31, 3])
9> (false,+I[alanchan, 20, 3])
emitUpdateWithRetract----acc:TestUDTAGGDemo2.TopNAccum(first=36, second=35, third=32, oldFirst=35, oldSecond=32, oldThird=31)
9> (true,+I[alanchan, 22, 3])
14> (false,+I[alan, 35, 1])
emitUpdateWithRetract----acc:TestUDTAGGDemo2.TopNAccum(first=28, second=26, third=24, oldFirst=26, oldSecond=24, oldThird=22)
14> (true,+I[alan, 36, 1])
9> (false,+I[alanchan, 26, 1])
14> (false,+I[alan, 32, 2])
9> (true,+I[alanchan, 28, 1])
14> (true,+I[alan, 35, 2])
9> (false,+I[alanchan, 24, 2])
9> (true,+I[alanchan, 26, 2])
14> (false,+I[alan, 31, 3])
9> (false,+I[alanchan, 22, 3])
14> (true,+I[alan, 32, 3])
9> (true,+I[alanchan, 24, 3])
emitUpdateWithRetract----acc:TestUDTAGGDemo2.TopNAccum(first=35, second=28, third=26, oldFirst=28, oldSecond=26, oldThird=24)
9> (false,+I[alanchan, 28, 1])
9> (true,+I[alanchan, 35, 1])
9> (false,+I[alanchan, 26, 2])
9> (true,+I[alanchan, 28, 2])
9> (false,+I[alanchan, 24, 3])
9> (true,+I[alanchan, 26, 3])

以上,介绍了自定义函数的分类以及四种自定义函数实现的例子。

你可能感兴趣的:(#,Flink专栏,flink,sql,大数据,flink,流批一体化,flink,sql,hivecatalog,数据库)