5、Redis缓存设计和性能优化、stream队列、多线程

多级缓存架构5、Redis缓存设计和性能优化、stream队列、多线程_第1张图片

缓存设计

1、缓存穿透

缓存穿透是指查询一个根本不存在的数据,缓存层和存储层都不会命中,通常出于容错的考虑,如果从存储层查不到数据则不写入缓存层
缓存穿透将导致不存在的数据每次请求都要到存储层去查询,失去了缓存保护后端存储的意义
造成缓存穿透的基本原因有两个:
1、自身业务代码或者数据出现问题
2、一些恶意攻击,爬虫等造成大量空命中
缓存穿透问题的解决方案
1、缓存空对象

String get(String key) {
    // 从缓存中获取数据
    String cacheValue = cache.get(key);
    // 缓存为空
    if (StringUtils.isBlank(cacheValue)) {
        // 从存储中获取
        String storageValue = storage.get(key);
        cache.set(key, storageValue);
        // 如果存储数据为空, 需要设置一个过期时间(300秒)
        if (storageValue == null) {
            cache.expire(key, 60 * 5);
        }
        return storageValue;
    } else {
        // 缓存非空
        return cacheValue;
    }
}

2、布隆过滤器
对于恶意攻击,向服务器请求大量不存在的数据造成的缓存穿透,还可以用布隆过滤器先做一次过滤,对于不存在的数据布隆过滤器一般都能够过滤掉,不让请求再往后端发送。当布隆过滤器说某个值存在时,这个值可能不存在;当它说不存在时,那就肯定不存在。5、Redis缓存设计和性能优化、stream队列、多线程_第2张图片
布隆过滤器就是一个大型的位数组和几个不一样的无偏 hash 函数。所谓无偏就是能够把元素的 hash 值算得比较均匀。
向布隆过滤器中添加 key 时,会使用多个 hash 函数对 key 进行 hash 算得一个整数索引值然后对位数组长度进行取模运算得到一个位置,每个 hash 函数都会算得一个不同的位置。再把位数组的这几个位置都置为 1 就完成了 add 操作。
向布隆过滤器询问 key 是否存在时,跟 add 一样,也会把 hash 的几个位置都算出来,看看位数组中这几个位置是否都为 1,只要有一个位为 0,那么说明布隆过滤器中这个key 不存在。如果都是 1,这并不能说明这个 key 就一定存在,只是极有可能存在,因为这些位被置为 1 可能是因为其它的 key 存在所致。如果这个位数组长度比较大,存在概率就会很大,如果这个位数组长度比较小,存在概率就会降低。
这种方法适用于数据命中不高、 数据相对固定、 实时性低(通常是数据集较大) 的应用场景, 代码维护较为复杂, 但是缓存空间占用很少。
可以用redisson实现布隆过滤器,引入依赖:

<dependency>
   <groupId>org.redisson</groupId>
   <artifactId>redisson</artifactId>
   <version>3.6.5</version>
</dependency>

示例伪代码:

package com.redisson;

import org.redisson.Redisson;
import org.redisson.api.RBloomFilter;
import org.redisson.api.RedissonClient;
import org.redisson.config.Config;

public class RedissonBloomFilter {

    public static void main(String[] args) {
        Config config = new Config();
        config.useSingleServer().setAddress("redis://localhost:6379");
        //构造Redisson
        RedissonClient redisson = Redisson.create(config);

        RBloomFilter<String> bloomFilter = redisson.getBloomFilter("nameList");
        //初始化布隆过滤器:预计元素为100000000L,误差率为3%,根据这两个参数会计算出底层的bit数组大小
        bloomFilter.tryInit(100000000L,0.03);
        //将zhuge插入到布隆过滤器中
        bloomFilter.add("zhuge");

        //判断下面号码是否在布隆过滤器中
        System.out.println(bloomFilter.contains("guojia"));//false
        System.out.println(bloomFilter.contains("baiqi"));//false
        System.out.println(bloomFilter.contains("zhuge"));//true
    }
}

使用布隆过滤器需要把所有数据提前放入布隆过滤器,并且在增加数据时也要往布隆过滤器里放,布隆过滤器缓存过滤伪代码:

//初始化布隆过滤器
RBloomFilter<String> bloomFilter = redisson.getBloomFilter("nameList");
//初始化布隆过滤器:预计元素为100000000L,误差率为3%
bloomFilter.tryInit(100000000L,0.03);
        
//把所有数据存入布隆过滤器
void init(){
    for (String key: keys) {
        bloomFilter.put(key);
    }
}

String get(String key) {
    // 从布隆过滤器这一级缓存判断下key是否存在
    Boolean exist = bloomFilter.contains(key);
    if(!exist){
        return "";
    }
    // 从缓存中获取数据
    String cacheValue = cache.get(key);
    // 缓存为空
    if (StringUtils.isBlank(cacheValue)) {
        // 从存储中获取
        String storageValue = storage.get(key);
        cache.set(key, storageValue);
        // 如果存储数据为空, 需要设置一个过期时间(300秒)
        if (storageValue == null) {
            cache.expire(key, 60 * 5);
        }
        return storageValue;
    } else {
        // 缓存非空
        return cacheValue;
    }
}

注意:布隆过滤器不能删除数据,如果要删除得重新初始化数据。

缓存失效(击穿)

由于大批量缓存在同一时间失效可能导致大量请求同时穿透缓存直达数据库,可能会造成数据库瞬间压力过大甚至挂掉,对于这种情况我们在批量增加缓存时最好将这一批数据的缓存过期时间设置为一个时间段内的不同时间。
示例伪代码:

String get(String key) {
    // 从缓存中获取数据
    String cacheValue = cache.get(key);
    // 缓存为空
    if (StringUtils.isBlank(cacheValue)) {
        // 从存储中获取
        String storageValue = storage.get(key);
        cache.set(key, storageValue);
        //设置一个过期时间(300到600之间的一个随机数)
        int expireTime = new Random().nextInt(300)  + 300;
        if (storageValue == null) {
            cache.expire(key, expireTime);
        }
        return storageValue;
    } else {
        // 缓存非空
        return cacheValue;
    }
}

缓存雪崩

缓存雪崩指的是缓存层支撑不住或宕掉后, 流量会像奔逃的野牛一样, 打向后端存储层。
由于缓存层承载着大量请求, 有效地保护了存储层, 但是如果缓存层由于某些原因不能提供服务(比如超大并发过来,缓存层支撑不住,或者由于缓存设计不好,类似大量请求访问bigkey,导致缓存能支撑的并发急剧下降), 于是大量请求都会打到存储层, 存储层的调用量会暴增, 造成存储层也会级联宕机的情况。
预防和解决缓存雪崩问题, 可以从以下三个方面进行着手。
1) 保证缓存层服务高可用性,比如使用Redis Sentinel或Redis Cluster。
2) 依赖隔离组件为后端限流熔断并降级。比如使用Sentinel或Hystrix限流降级组件。
比如服务降级,我们可以针对不同的数据采取不同的处理方式。当业务应用访问的是非核心数据(例如电商商品属性,用户信息等)时,暂时停止从缓存中查询这些数据,而是直接返回预定义的默认降级信息、空值或是错误提示信息;当业务应用访问的是核心数据(例如电商商品库存)时,仍然允许查询缓存,如果缓存缺失,也可以继续通过数据库读取。
3) 提前演练。 在项目上线前, 演练缓存层宕掉后, 应用以及后端的负载情况以及可能出现的问题, 在此基础上做一些预案设定。

热点缓存key重建优化

开发人员使用“缓存+过期时间”的策略既可以加速数据读写, 又保证数据的定期更新, 这种模式基本能够满足绝大部分需求。 但是有两个问题如果同时出现, 可能就会对应用造成致命的危害:
当前key是一个热点key(例如一个热门的娱乐新闻),并发量非常大。
重建缓存不能在短时间完成, 可能是一个复杂计算, 例如复杂的SQL、 多次IO、 多个依赖等。
在缓存失效的瞬间, 有大量线程来重建缓存, 造成后端负载加大, 甚至可能会让应用崩溃。
要解决这个问题主要就是要避免大量线程同时重建缓存。
我们可以利用互斥锁来解决,此方法只允许一个线程重建缓存, 其他线程等待重建缓存的线程执行完, 重新从缓存获取数据即可。
示例伪代码:

String get(String key) {
    // 从Redis中获取数据
    String value = redis.get(key);
    // 如果value为空, 则开始重构缓存
    if (value == null) {
        // 只允许一个线程重建缓存, 使用nx, 并设置过期时间ex
        String mutexKey = "mutext:key:" + key;
        if (redis.set(mutexKey, "1", "ex 180", "nx")) {
             // 从数据源获取数据
            value = db.get(key);
            // 回写Redis, 并设置过期时间
            redis.setex(key, timeout, value);
            // 删除key_mutex
            redis.delete(mutexKey);
        }// 其他线程休息50毫秒后重试
        else {
            Thread.sleep(50);
            get(key);
        }
    }
    return value;
}

缓存与数据库双写不一致

在大并发下,同时操作数据库与缓存会存在数据不一致性问题
1、双写不一致情况
5、Redis缓存设计和性能优化、stream队列、多线程_第3张图片
2、读写并发不一致
5、Redis缓存设计和性能优化、stream队列、多线程_第4张图片
解决方案:
1、对于并发几率很小的数据(如个人维度的订单数据、用户数据等),这种几乎不用考虑这个问题,很少会发生缓存不一致,可以给缓存数据加上过期时间,每隔一段时间触发读的主动更新即可。
2、就算并发很高,如果业务上能容忍短时间的缓存数据不一致(如商品名称,商品分类菜单等),缓存加上过期时间依然可以解决大部分业务对于缓存的要求。
3、如果不能容忍缓存数据不一致,可以通过加分布式读写锁保证并发读写或写写的时候按顺序排好队,读读的时候相当于无锁。
4、也可以用阿里开源的canal通过监听数据库的binlog日志及时的去修改缓存,但是引入了新的中间件,增加了系统的复杂度。5、Redis缓存设计和性能优化、stream队列、多线程_第5张图片
总结:
以上我们针对的都是读多写少的情况加入缓存提高性能,如果写多读多的情况又不能容忍缓存数据不一致,那就没必要加缓存了,可以直接操作数据库。当然,如果数据库抗不住压力,还可以把缓存作为数据读写的主存储,异步将数据同步到数据库,数据库只是作为数据的备份。
放入缓存的数据应该是对实时性、一致性要求不是很高的数据。切记不要为了用缓存,同时又要保证绝对的一致性做大量的过度设计和控制,增加系统复杂性!

开发规范与性能优化

一、键值设计

  1. key名设计
    (1)【建议】: 可读性和可管理性
    以业务名(或数据库名)为前缀(防止key冲突),用冒号分隔,比如业务名:表名:id
trade:order:1

(2)【建议】:简洁性
保证语义的前提下,控制key的长度,当key较多时,内存占用也不容忽视,例如:

user:{uid}:friends:messages:{mid} 简化为 u:{uid}:fr:m:{mid}

(3)【强制】:不要包含特殊字符
反例:包含空格、换行、单双引号以及其他转义字符

  1. value设计
    (1)【强制】:拒绝bigkey(防止网卡流量、慢查询)
    在Redis中,一个字符串最大512MB,一个二级数据结构(例如hash、list、set、zset)可以存储大约40亿个(2^32-1)个元素,但实际中如果下面两种情况,我就会认为它是bigkey。
    字符串类型:它的big体现在单个value值很大,一般认为超过10KB就是bigkey。
    非字符串类型:哈希、列表、集合、有序集合,它们的big体现在元素个数太多。
    一般来说,string类型控制在10KB以内,hash、list、set、zset元素个数不要超过5000。
    反例:一个包含200万个元素的list。
    非字符串的bigkey,不要使用del删除,使用hscan、sscan、zscan方式渐进式删除,同时要注意防止bigkey过期时间自动删除问题(例如一个200万的zset设置1小时过期,会触发del操作,造成阻塞)
    bigkey的危害:
    1.导致redis阻塞
    2.网络拥塞
    bigkey也就意味着每次获取要产生的网络流量较大,假设一个bigkey为1MB,客户端每秒访问量为1000,那么每秒产生1000MB的流量,对于普通的千兆网卡(按照字节算是128MB/s)的服务器来说简直是灭顶之灾,而且一般服务器会采用单机多实例的方式来部署,也就是说一个bigkey可能会对其他实例也造成影响,其后果不堪设想。
  2. 过期删除
    有个bigkey,它安分守己(只执行简单的命令,例如hget、lpop、zscore等),但它设置了过期时间,当它过期后,会被删除,如果没有使用Redis 4.0的过期异步删除(lazyfree-lazy-expire yes),就会存在阻塞Redis的可能性。
    bigkey的产生:
    一般来说,bigkey的产生都是由于程序设计不当,或者对于数据规模预料不清楚造成的,来看几个例子:
    (1) 社交类:粉丝列表,如果某些明星或者大v不精心设计下,必是bigkey。
    (2) 统计类:例如按天存储某项功能或者网站的用户集合,除非没几个人用,否则必是bigkey。
    (3) 缓存类:将数据从数据库load出来序列化放到Redis里,这个方式非常常用,但有两个地方需要注意,第一,是不是有必要把所有字段都缓存;第二,有没有相关关联的数据,有的同学为了图方便把相关数据都存一个key下,产生bigkey。
    如何优化bigkey

  3. big list: list1、list2、…listN
    big hash:可以讲数据分段存储,比如一个大的key,假设存了1百万的用户数据,可以拆分成200个key,每个key下面存放5000个用户数据
  4. 如果bigkey不可避免,也要思考一下要不要每次把所有元素都取出来(例如有时候仅仅需要hmget,而不是hgetall),删除也是一样,尽量使用优雅的方式来处理。

(2)【推荐】:选择适合的数据类型。
例如:实体类型(要合理控制和使用数据结构,但也要注意节省内存和性能之间的平衡)
反例:

set user:1:name tom
set user:1:age 19
set user:1:favor football

正例:

hmset user:1 name tom age 19 favor football

3.【推荐】:控制key的生命周期,redis不是垃圾桶。
建议使用expire设置过期时间(条件允许可以打散过期时间,防止集中过期)。

二、命令使用

1.【推荐】 O(N)命令关注N的数量
例如hgetall、lrange、smembers、zrange、sinter等并非不能使用,但是需要明确N的值。有遍历的需求可以使用hscan、sscan、zscan代替。

2.【推荐】:禁用命令
禁止线上使用keys、flushall、flushdb等,通过redis的rename机制禁掉命令,或者使用scan的方式渐进式处理。

3.【推荐】合理使用select
redis的多数据库较弱,使用数字进行区分,很多客户端支持较差,同时多业务用多数据库实际还是单线程处理,会有干扰。

4.【推荐】使用批量操作提高效率
原生命令:例如mget、mset。
非原生命令:可以使用pipeline提高效率。
但要注意控制一次批量操作的元素个数(例如500以内,实际也和元素字节数有关)。
注意两者不同:

  1. 原生命令是原子操作,pipeline是非原子操作。
  2. pipeline可以打包不同的命令,原生命令做不到
  3. pipeline需要客户端和服务端同时支持。

5.【建议】Redis事务功能较弱,不建议过多使用,可以用lua替代

三、客户端使用

1.【推荐】
避免多个应用使用一个Redis实例
正例:不相干的业务拆分,公共数据做服务化。

2.【推荐】
使用带有连接池的数据库,可以有效控制连接,同时提高效率,标准使用方式:

JedisPoolConfig jedisPoolConfig = new JedisPoolConfig();
jedisPoolConfig.setMaxTotal(5);
jedisPoolConfig.setMaxIdle(2);
jedisPoolConfig.setTestOnBorrow(true);

JedisPool jedisPool = new JedisPool(jedisPoolConfig, "192.168.0.60", 6379, 3000, null);

Jedis jedis = null;
try {
    jedis = jedisPool.getResource();
    //具体的命令
    jedis.executeCommand()
} catch (Exception e) {
    logger.error("op key {} error: " + e.getMessage(), key, e);
} finally {
    //注意这里不是关闭连接,在JedisPool模式下,Jedis会被归还给资源池。
    if (jedis != null) 
        jedis.close();
}

连接池参数含义:
5、Redis缓存设计和性能优化、stream队列、多线程_第6张图片
优化建议:
1)maxTotal:最大连接数,早期的版本叫maxActive
实际上这个是一个很难回答的问题,考虑的因素比较多:
业务希望Redis并发量
客户端执行命令时间
Redis资源:例如 nodes(例如应用个数) * maxTotal 是不能超过redis的最大连接数maxclients。
资源开销:例如虽然希望控制空闲连接(连接池此刻可马上使用的连接),但是不希望因为连接池的频繁释放创建连接造成不必靠开销。
以一个例子说明,假设:
一次命令时间(borrow|return resource + Jedis执行命令(含网络) )的平均耗时约为1ms,一个连接的QPS大约是1000
业务期望的QPS是50000
那么理论上需要的资源池大小是50000 / 1000 = 50个。但事实上这是个理论值,还要考虑到要比理论值预留一些资源,通常来讲maxTotal可以比理论值大一些。
但这个值不是越大越好,一方面连接太多占用客户端和服务端资源,另一方面对于Redis这种高QPS的服务器,一个大命令的阻塞即使设置再大资源池仍然会无济于事。
2)maxIdle和minIdle
maxIdle实际上才是业务需要的最大连接数,maxTotal是为了给出余量,所以maxIdle不要设置过小,否则会有new Jedis(新连接)开销。
连接池的最佳性能是maxTotal = maxIdle,这样就避免连接池伸缩带来的性能干扰。但是如果并发量不大或者maxTotal设置过高,会导致不必要的连接资源浪费。一般推荐maxIdle可以设置为按上面的业务期望QPS计算出来的理论连接数,maxTotal可以再放大一倍。
minIdle(最小空闲连接数),与其说是最小空闲连接数,不如说是"至少需要保持的空闲连接数",在使用连接的过程中,如果连接数超过了minIdle,那么继续建立连接,如果超过了maxIdle,当超过的连接执行完业务后会慢慢被移出连接池释放掉。
如果系统启动完马上就会有很多的请求过来,那么可以给redis连接池做预热,比如快速的创建一些redis连接,执行简单命令,类似ping(),快速的将连接池里的空闲连接提升到minIdle的数量。
连接池预热示例代码:

List<Jedis> minIdleJedisList = new ArrayList<Jedis>(jedisPoolConfig.getMinIdle());

for (int i = 0; i < jedisPoolConfig.getMinIdle(); i++) {
    Jedis jedis = null;
    try {
        jedis = pool.getResource();
        minIdleJedisList.add(jedis);
        jedis.ping();
    } catch (Exception e) {
        logger.error(e.getMessage(), e);
    } finally {
        //注意,这里不能马上close将连接还回连接池,否则最后连接池里只会建立1个连接。。
        //jedis.close();
    }
}
//统一将预热的连接还回连接池
for (int i = 0; i < jedisPoolConfig.getMinIdle(); i++) {
    Jedis jedis = null;
    try {
        jedis = minIdleJedisList.get(i);
        //将连接归还回连接池
        jedis.close();
    } catch (Exception e) {
        logger.error(e.getMessage(), e);
    } finally {
    }
}

总之,要根据实际系统的QPS和调用redis客户端的规模整体评估每个节点所使用的连接池大小。

3.【建议】
高并发下建议客户端添加熔断功能(例如sentinel、hystrix)

4.【推荐】
设置合理的密码,如有必要可以使用SSL加密访问
5.【建议】
Redis对于过期键有三种清除策略:
被动删除:当读/写一个已经过期的key时,会触发惰性删除策略,直接删除掉这个过期key
主动删除:由于惰性删除策略无法保证冷数据被及时删掉,所以Redis会定期(默认每100ms)主动淘汰一批已过期的key,这里的一批只是部分过期key,所以可能会出现部分key已经过期但还没有被清理掉的情况,导致内存并没有被释放
当前已用内存超过maxmemory限定时,触发主动清理策略
主动清理策略在Redis 4.0 之前一共实现了 6 种内存淘汰策略,在 4.0 之后,又增加了 2 种策略,总共8种:
a) 针对设置了过期时间的key做处理:
volatile-ttl:在筛选时,会针对设置了过期时间的键值对,根据过期时间的先后进行删除,越早过期的越先被删除。
volatile-random:就像它的名称一样,在设置了过期时间的键值对中,进行随机删除。
volatile-lru:会使用 LRU 算法筛选设置了过期时间的键值对删除。
volatile-lfu:会使用 LFU 算法筛选设置了过期时间的键值对删除。
b) 针对所有的key做处理:
allkeys-random:从所有键值对中随机选择并删除数据。
allkeys-lru:使用 LRU 算法在所有数据中进行筛选删除。
allkeys-lfu:使用 LFU 算法在所有数据中进行筛选删除。
c) 不处理:
noeviction:不会剔除任何数据,拒绝所有写入操作并返回客户端错误信息"(error) OOM command not allowed when used memory",此时Redis只响应读操作。

LRU 算法(Least Recently Used,最近最少使用)
淘汰很久没被访问过的数据,以最近一次访问时间作为参考。

LFU 算法(Least Frequently Used,最不经常使用)
淘汰最近一段时间被访问次数最少的数据,以次数作为参考。

当存在热点数据时,LRU的效率很好,但偶发性的、周期性的批量操作会导致LRU命中率急剧下降,缓存污染情况比较严重。这时使用LFU可能更好点。

根据自身业务类型,配置好maxmemory-policy(默认是noeviction),推荐使用volatile-lru。如果不设置最大内存,当 Redis 内存超出物理内存限制时,内存的数据会开始和磁盘产生频繁的交换 (swap),会让 Redis 的性能急剧下降。
当Redis运行在主从模式时,只有主结点才会执行过期删除策略,然后把删除操作”del key”同步到从结点删除数据。

四、系统内核参数优化

vm.swapiness
swap对于操作系统来说比较重要,当物理内存不足时,可以将一部分内存页进行swap到硬盘上,以解燃眉之急。但世界上没有免费午餐,swap空间由硬盘提供,对于需要高并发、高吞吐的应用来说,磁盘IO通常会成为系统瓶颈。在Linux中,并不是要等到所有物理内存都使用完才会使用到swap,系统参数swppiness会决定操作系统使用swap的倾向程度。swappiness的取值范围是0~100,swappiness的值越大,说明操作系统可能使用swap的概率越高,swappiness值越低,表示操作系统更加倾向于使用物理内存。swappiness的取值越大,说明操作系统可能使用swap的概率越高,越低则越倾向于使用物理内存。
如果linux内核版本<3.5,那么swapiness设置为0,这样系统宁愿swap也不会oom killer(杀掉进程)
如果linux内核版本>=3.5,那么swapiness设置为1,这样系统宁愿swap也不会oom killer
一般需要保证redis不会被kill掉:

cat /proc/version  #查看linux内核版本
echo 1 > /proc/sys/vm/swappiness
echo vm.swapiness=1 >> /etc/sysctl.conf

PS:OOM killer 机制是指Linux操作系统发现可用内存不足时,强制杀死一些用户进程(非内核进程),来保证系统有足够的可用内存进行分配。

vm.overcommit_memory(默认0)
0:表示内核将检查是否有足够的可用物理内存(实际不一定用满)供应用进程使用;如果有足够的可用物理内存,内存申请允许;否则,内存申请失败,并把错误返回给应用进程 
1:表示内核允许分配所有的物理内存,而不管当前的内存状态如何
如果是0的话,可能导致类似fork等操作执行失败,申请不到足够的内存空间
Redis建议把这个值设置为1,就是为了让fork操作能够在低内存下也执行成功。

cat /proc/sys/vm/overcommit_memory
echo "vm.overcommit_memory=1" >> /etc/sysctl.conf
sysctl vm.overcommit_memory=1

合理设置文件句柄数
操作系统进程试图打开一个文件(或者叫句柄),但是现在进程打开的句柄数已经达到了上限,继续打开会报错:“Too many open files”

ulimit -a  #查看系统文件句柄数,看open files那项
ulimit -n 65535  #设置系统文件句柄数

慢查询日志:slowlog

Redis慢日志命令说明:
config get slow* #查询有关慢日志的配置信息
config set slowlog-log-slower-than 20000  #设置慢日志使时间阈值,单位微秒,此处为20毫秒,即超过20毫秒的操作都会记录下来,生产环境建议设置1000,也就是1ms,这样理论上redis并发至少达到1000,如果要求单机并发达到1万以上,这个值可以设置为100
config set slowlog-max-len 1024  #设置慢日志记录保存数量,如果保存数量已满,会删除最早的记录,最新的记录追加进来。记录慢查询日志时Redis会对长命令做截断操作,并不会占用大量内存,建议设置稍大些,防止丢失日志
config rewrite #将服务器当前所使用的配置保存到redis.conf
slowlog len #获取慢查询日志列表的当前长度
slowlog get 5 #获取最新的5条慢查询日志。慢查询日志由四个属性组成:标识ID,发生时间戳,命令耗时,执行命令和参数
slowlog reset #重置慢查询日志

Redis的官方文档相当丰富和齐全,WEB地址如下:
https://redis.io/documentation

Redis队列与Stream、Redis 6多线程详解

Redis队列与Stream

Redis5.0 最大的新特性就是多出了一个数据结构 Stream,它是一个新的强大的支持多播的可持久化的消息队列,作者声明Redis Stream地借鉴了 Kafka 的设计。

Stream总述

5、Redis缓存设计和性能优化、stream队列、多线程_第7张图片

Redis Stream 的结构如上图所示,每一个Stream都有一个消息链表,将所有加入的消息都串起来,每个消息都有一个唯一的 ID 和对应的内容。消息是持久化的,Redis 重启后,内容还在。
每个 Stream 都有唯一的名称,它就是 Redis 的 key,在我们首次使用xadd指令追加消息时自动创建。
每个 Stream 都可以挂多个消费组,每个消费组会有个游标last_delivered_id在 Stream 数组之上往前移动,表示当前消费组已经消费到哪条消息了。每个消费组都有一个 Stream 内唯一的名称,消费组不会自动创建,它需要单独的指令xgroup create进行创建,需要指定从 Stream 的某个消息 ID 开始消费,这个 ID 用来初始化last_delivered_id变量。
每个消费组 (Consumer Group) 的状态都是独立的,相互不受影响。也就是说同一份 Stream 内部的消息会被每个消费组都消费到。
同一个消费组 (Consumer Group) 可以挂接多个消费者 (Consumer),这些消费者之间是竞争关系,任意一个消费者读取了消息都会使游标last_delivered_id往前移动。每个消费者有一个组内唯一名称。
消费者 (Consumer) 内部会有个状态变量pending_ids,它记录了当前已经被客户端读取,但是还没有 ack的消息。如果客户端没有 ack,这个变量里面的消息 ID 会越来越多,一旦某个消息被 ack,它就开始减少。这个 pending_ids 变量在 Redis 官方被称之为PEL,也就是Pending Entries List,这是一个很核心的数据结构,它用来确保客户端至少消费了消息一次,而不会在网络传输的中途丢失了没处理。
消息 ID 的形式是timestampInMillis-sequence,例如1527846880572-5,它表示当前的消息在毫米时间戳1527846880572时产生,并且是该毫秒内产生的第 5 条消息。消息 ID 可以由服务器自动生成,也可以由客户端自己指定,但是形式必须是整数-整数,而且必须是后面加入的消息的 ID 要大于前面的消息 ID。
消息内容就是键值对,形如 hash 结构的键值对,这没什么特别之处。

常用操作命令

生产端

xadd 追加消息
xdel 删除消息,这里的删除仅仅是设置了标志位,不会实际删除消息。
xrange 获取消息列表,会自动过滤已经删除的消息
xlen 消息长度
del 删除 Stream
xadd streamtest * name mark age 18
在这里插入图片描述

streamtest 表示当前这个队列的名字,也就是我们一般意义上Redis中的key,* 号表示服务器自动生成 ID,后面顺序跟着“name mark age 18”,是我们存入当前streamtest 这个队列的消息,采用的也是 key/value的存储形式
返回值1626705954593-0 则是生成的消息 ID,由两部分组成:时间戳-序号。时间戳时毫秒级单位,是生成消息的Redis服务器时间,它是个64位整型。序号是在这个毫秒时间点内的消息序号。它也是个64位整型。
为了保证消息是有序的,因此Redis生成的ID是单调递增有序的。由于ID中包含时间戳部分,为了避免服务器时间错误而带来的问题(例如服务器时间延后了),Redis的每个Stream类型数据都维护一个latest_generated_id属性,用于记录最后一个消息的ID。若发现当前时间戳退后(小于latest_generated_id所记录的),则采用时间戳不变而序号递增的方案来作为新消息ID(这也是序号为什么使用int64的原因,保证有足够多的的序号),从而保证ID的单调递增性质。
如果不是非常特别的需求,强烈建议使用Redis的方案生成消息ID,因为这种时间戳+序号的单调递增的ID方案,几乎可以满足全部的需求,但ID是支持自定义的。
5、Redis缓存设计和性能优化、stream队列、多线程_第8张图片

xrange streamtest - +
其中-表示最小值 , + 表示最大值
5、Redis缓存设计和性能优化、stream队列、多线程_第9张图片

或者我们可以指定消息 ID 的列表:
5、Redis缓存设计和性能优化、stream队列、多线程_第10张图片

xdel streamtest 1626706380924-0
xlen streamtest
5、Redis缓存设计和性能优化、stream队列、多线程_第11张图片

del streamtest 删除整个 Stream
在这里插入图片描述

消费端

单消费者

虽然Stream中有消费者组的概念,但是可以在不定义消费组的情况下进行 Stream 消息的独立消费,当 Stream 没有新消息时,甚至可以阻塞等待。Redis 设计了一个单独的消费指令xread,可以将 Stream 当成普通的消息队列 (list) 来使用。使用 xread 时,我们可以完全忽略消费组 (Consumer Group) 的存在,就好比 Stream 就是一个普通的列表 (list)。
xread count 1 streams stream2 0-0
“count 1”表示从 Stream 读取1条消息,缺省当然是头部,“streams”可以理解为Redis关键字,“stream2”指明了要读取的队列名称,“0-0”指从头开始
5、Redis缓存设计和性能优化、stream队列、多线程_第12张图片

xread count 2 streams stream2 1626710882927-0
也可以指定从streams的消息Id开始(不包括命令中的消息id)
5、Redis缓存设计和性能优化、stream队列、多线程_第13张图片

xread count 1 streams stream2 $
$代表从尾部读取,上面的意思就是从尾部读取最新的一条消息,此时默认不返回任何消息
在这里插入图片描述

所以最好以阻塞的方式读取尾部最新的一条消息,直到新的消息的到来
xread block 0 count 1 streams stream2 $
block后面的数字代表阻塞时间,单位毫秒
在这里插入图片描述

此时我们新开一个客户端,往stream2中写入一条消息
在这里插入图片描述

可以看到阻塞解除了,返回了新的消息内容,而且还显示了一个等待时间,这里我们等待了127.87s
5、Redis缓存设计和性能优化、stream队列、多线程_第14张图片

一般来说客户端如果想要使用 xread 进行顺序消费,一定要记住当前消费到哪里了,也就是返回的消息 ID。下次继续调用 xread 时,将上次返回的最后一个消息 ID 作为参数传递进去,就可以继续消费后续的消息。

消费组

创建消费组

Stream 通过xgroup create指令创建消费组 (Consumer Group),需要传递起始消息 ID 参数用来初始化last_delivered_id变量。
xgroup create stream2 cg1 0-0
“stream2”指明了要读取的队列名称,“cg1”表示消费组的名称,“0-0”表示从头开始消费
在这里插入图片描述

xgroup create stream2 cg2 $
$ 表示从尾部开始消费,只接受新消息,当前 Stream 消息会全部忽略
在这里插入图片描述

现在我们可以用xinfo命令来看看stream2的情况:
xinfo stream stream2
5、Redis缓存设计和性能优化、stream队列、多线程_第15张图片

xinfo groups stream2
5、Redis缓存设计和性能优化、stream队列、多线程_第16张图片

消息消费

有了消费组,自然还需要消费者,Stream 提供了 xreadgroup 指令可以进行消费组的组内消费,需要提供消费组名称、消费者名称和起始消息 ID。
它同 xread 一样,也可以阻塞等待新消息。读到新消息后,对应的消息 ID 就会进入消费者的PEL(正在处理的消息) 结构里,客户端处理完毕后使用 xack 指令通知服务器,本条消息已经处理完毕,该消息 ID 就会从 PEL 中移除。

xreadgroup GROUP cg1 c1 count 1 streams stream2 >

“GROUP”属于关键字,“cg1”是消费组名称,“c1”是消费者名称,“count 1”指明了消费数量,> 号表示从当前消费组的 last_delivered_id 后面开始读,每当消费者读取一条消息,last_delivered_id 变量就会前进
5、Redis缓存设计和性能优化、stream队列、多线程_第17张图片

前面我们定义cg1的时候是从头开始消费的,自然就获得Stream2中第一条消息
再执行一次上面的命令
5、Redis缓存设计和性能优化、stream队列、多线程_第18张图片

自然就读取到了下条消息。
我们将Stream2中的消息读取完
xreadgroup GROUP cg1 c1 count 2 streams stream2 >
很自然就没有消息可读了, xreadgroup GROUP cg1 c1 count 1 streams stream2 >
5、Redis缓存设计和性能优化、stream队列、多线程_第19张图片

然后设置阻塞等待
xreadgroup GROUP cg1 c1 block 0 count 1 streams stream2 >
在这里插入图片描述

我们新开一个客户端,发送消息到stream2
xadd stream2 * name lison score 98
在这里插入图片描述

回到原来的客户端,发现阻塞解除,收到新消息
5、Redis缓存设计和性能优化、stream队列、多线程_第20张图片

我们来观察一下观察消费组状态
5、Redis缓存设计和性能优化、stream队列、多线程_第21张图片

如果同一个消费组有多个消费者,我们还可以通过 xinfo consumers 指令观察每个消费者的状态
xinfo consumers stream2 cg1
5、Redis缓存设计和性能优化、stream队列、多线程_第22张图片

可以看到目前c1这个消费者有 5 条待ACK的消息,空闲了441340 ms 没有读取消息。
如果我们确认一条消息
xack stream2 cg1 1626751586744-0
就可以看到待确认消息变成了4条
5、Redis缓存设计和性能优化、stream队列、多线程_第23张图片

xack允许带多个消息id,比如
在这里插入图片描述

同时Stream还提供了命令XPENDIING 用来获消费组或消费内消费者的未处理完毕的消息,每个Pending的消息有4个属性:
消息ID
所属消费者
IDLE,已读取时长
delivery counter,消息被读取次数
命令XCLAIM用以进行消息转移的操作,将某个消息转移到自己的Pending列表中。需要设置组、转移的目标消费者和消息ID,同时需要提供IDLE(已被读取时长),只有超过这个时长,才能被转移。
更多的Redis的Stream命令请大家参考Redis官方文档:
https://redis.io/topics/streams-intro
https://redis.io/commands
同时Redis文档中,在每个命令的详情页右边会显示“Related commands”,可以通过这个列表快速了解相关的命令和进入具体命令的详情页。

Redis队列几种实现的总结

基于List的 LPUSH+BRPOP 的实现

足够简单,消费消息延迟几乎为零,但是需要处理空闲连接的问题。
如果线程一直阻塞在那里,Redis客户端的连接就成了闲置连接,闲置过久,服务器一般会主动断开连接,减少闲置资源占用,这个时候blpop和brpop或抛出异常,所以在编写客户端消费者的时候要小心,如果捕获到异常需要重试。
其他缺点包括:
做消费者确认ACK麻烦,不能保证消费者消费消息后是否成功处理的问题(宕机或处理异常等),通常需要维护一个Pending列表,保证消息处理确认;不能做广播模式,如pub/sub,消息发布/订阅模型;不能重复消费,一旦消费就会被删除;不支持分组消费。

基于Sorted-Set的实现

多用来实现延迟队列,当然也可以实现有序的普通的消息队列,但是消费者无法阻塞的获取消息,只能轮询,不允许重复消息。

PUB/SUB,订阅/发布模式

优点:
典型的广播模式,一个消息可以发布到多个消费者;多信道订阅,消费者可以同时订阅多个信道,从而接收多类消息;消息即时发送,消息不用等待消费者读取,消费者会自动接收到信道发布的消息。
缺点:
消息一旦发布,不能接收。换句话就是发布时若客户端不在线,则消息丢失,不能寻回;不能保证每个消费者接收的时间是一致的;若消费者客户端出现消息积压,到一定程度,会被强制断开,导致消息意外丢失。通常发生在消息的生产远大于消费速度时;可见,Pub/Sub 模式不适合做消息存储,消息积压类的业务,而是擅长处理广播,即时通讯,即时反馈的业务。

基于Stream类型的实现

基本上已经有了一个消息中间件的雏形,可以考虑在生产过程中使用,当然真正要在生产中应用,要做的事情还很多,比如消息队列的管理和监控就需要花大力气去实现,而专业消息队列都已经自带或者存在着很好的第三方方案和插件。

与Java的集成

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;
import redis.clients.jedis.*;
import redis.clients.jedis.params.XReadGroupParams;

import java.util.HashMap;
import java.util.List;
import java.util.Map;

/**
 * 实现消费组消费,不考虑单消费者模式
 */
@Component
public class StreamVer {
    public final static String RS_STREAM_MQ_NS = "rsm:";

    @Autowired
    private JedisPool jedisPool;

    /**
     * 发布消息到Stream
     * @param key
     * @param message
     * @return
     */
    public StreamEntryID produce(String key,Map<String,String> message){
        Jedis jedis = null;
        try {
            jedis = jedisPool.getResource();
            StreamEntryID id = jedis.xadd(RS_STREAM_MQ_NS+key, StreamEntryID.NEW_ENTRY, message);
            System.out.println("发布消息到"+RS_STREAM_MQ_NS+key+" 返回消息id="+id.toString());
            return id;
        } catch (Exception e) {
            throw new RuntimeException("发布消息失败!");
        } finally {
            jedis.close();
        }
    }


    /**
     * 创建消费群组,消费群组不可重复创建
     * @param key
     * @param groupName
     * @param lastDeliveredId
     */
    public void createCustomGroup(String key, String groupName, String lastDeliveredId){
        Jedis jedis = null;
        try {
            StreamEntryID id = null;
            if (lastDeliveredId==null){
                lastDeliveredId = "0-0";
            }
            id = new StreamEntryID(lastDeliveredId);
            jedis = jedisPool.getResource();
            /*makeStream表示没有时是否自动创建stream,但是如果有,再自动创建会异常*/
            jedis.xgroupCreate(RS_STREAM_MQ_NS+key,groupName,id,false);
            System.out.println("创建消费群组成功:"+groupName);
        } catch (Exception e) {
            throw new RuntimeException("创建消费群组失败!",e);
        } finally {
            jedis.close();
        }
    }


    /**
     * 消息消费
     * @param key
     * @param customerName
     * @param groupName
     * @return
     */
    public List<Map.Entry<String, List<StreamEntry>>> consume(String key, String customerName,String groupName){
        Jedis jedis = null;
        try {
            jedis = jedisPool.getResource();
            /*消息消费时的参数*/
            XReadGroupParams xReadGroupParams = new XReadGroupParams().block(0).count(1);
            Map<String, StreamEntryID> streams = new HashMap<>();
            streams.put(RS_STREAM_MQ_NS+key,StreamEntryID.UNRECEIVED_ENTRY);
            List<Map.Entry<String, List<StreamEntry>>> result
                    = jedis.xreadGroup(groupName, customerName, xReadGroupParams, streams);
            System.out.println(groupName+"从"+RS_STREAM_MQ_NS+key+"接受消息, 返回消息:"+result);
            return result;
        } catch (Exception e) {
            throw new RuntimeException("消息消费失败!",e);
        } finally {
            jedis.close();
        }
    }

    /**
     * 消息确认
     * @param key
     * @param groupName
     * @param msgId
     */
    public void ackMsg(String key, String groupName,StreamEntryID msgId){
        if (msgId==null) throw new RuntimeException("msgId为空!");
        Jedis jedis = null;
        try {
            jedis = jedisPool.getResource();
            System.out.println(jedis.xack(key,groupName,msgId));
            System.out.println(RS_STREAM_MQ_NS+key+",消费群组"+groupName+" 消息已确认");
        } catch (Exception e) {
            throw new RuntimeException("消息确认失败!",e);
        } finally {
            jedis.close();
        }
    }

    /*
    检查消费者群组是否存在,辅助方法
    * */
    public boolean checkGroup(String key, String groupName){
        Jedis jedis = null;
        try {
            jedis = jedisPool.getResource();
            List<StreamGroupInfo> xinfoGroupResult = jedis.xinfoGroup(RS_STREAM_MQ_NS+key);
            for(StreamGroupInfo groupinfo : xinfoGroupResult) {
                if(groupName.equals(groupinfo.getName())) return true;
            }
            return false;
        } catch (Exception e) {
            throw new RuntimeException("检查消费群组失败!",e);
        } finally {
            jedis.close();
        }
    }

    public final static int MQ_INFO_CONSUMER = 1;
    public final static int MQ_INFO_GROUP = 2;
    public final static int MQ_INFO_STREAM = 0;
    /**
     * 消息队列信息查看
     * @param type
     */
    public void MqInfo(int type,String key, String groupName){
        Jedis jedis = null;
        try {
            jedis = jedisPool.getResource();
            if(type==MQ_INFO_CONSUMER){
                List<StreamConsumersInfo> xinfoConsumersResult = jedis.xinfoConsumers(RS_STREAM_MQ_NS+key, groupName);
                System.out.println(RS_STREAM_MQ_NS+key+" 消费者信息:" + xinfoConsumersResult);
                for( StreamConsumersInfo consumersinfo : xinfoConsumersResult) {
                    System.out.println("-ConsumerInfo:" + consumersinfo.getConsumerInfo());
                    System.out.println("--Name:" + consumersinfo.getName());
                    System.out.println("--Pending:" + consumersinfo.getPending());
                    System.out.println("--Idle:" + consumersinfo.getIdle());
                }
            }else if (type==MQ_INFO_GROUP){
                List<StreamGroupInfo> xinfoGroupResult = jedis.xinfoGroup(RS_STREAM_MQ_NS+key);
                System.out.println(RS_STREAM_MQ_NS+key+"消费者群组信息:" + xinfoGroupResult);
                for(StreamGroupInfo groupinfo : xinfoGroupResult) {
                    System.out.println("-GroupInfo:" + groupinfo.getGroupInfo());
                    System.out.println("--Name:" + groupinfo.getName());
                    System.out.println("--Consumers:" + groupinfo.getConsumers());
                    System.out.println("--Pending:" + groupinfo.getPending());
                    System.out.println("--LastDeliveredId:" + groupinfo.getLastDeliveredId());
                }
            }else{
                StreamInfo xinfoStreamResult = jedis.xinfoStream(RS_STREAM_MQ_NS+key);
                System.out.println(RS_STREAM_MQ_NS+key+"队列信息:" + xinfoStreamResult);
                System.out.println("-StreamInfo:" + xinfoStreamResult.getStreamInfo());
                System.out.println("--Length:" + xinfoStreamResult.getLength());
                System.out.println("--RadixTreeKeys:" + xinfoStreamResult.getRadixTreeKeys());
                System.out.println("--RadixTreeNodes():" + xinfoStreamResult.getRadixTreeNodes());
                System.out.println("--Groups:" + xinfoStreamResult.getGroups());
                System.out.println("--LastGeneratedId:" + xinfoStreamResult.getLastGeneratedId());
                System.out.println("--FirstEntry:" + xinfoStreamResult.getFirstEntry());
                System.out.println("--LastEntry:" + xinfoStreamResult.getLastEntry());
            }
        } catch (Exception e) {
            throw new RuntimeException("消息队列信息检索失败!",e);
        } finally {
            jedis.close();
        }
    }

}

消息队列问题

从我们上面对Stream的使用表明,Stream已经具备了一个消息队列的基本要素,生产者API、消费者API,消息Broker,消息的确认机制等等,所以在使用消息中间件中产生的问题,这里一样也会遇到。

Stream 消息太多怎么办?

要是消息积累太多,Stream 的链表岂不是很长,内容会不会爆掉?xdel 指令又不会删除消息,它只是给消息做了个标志位。
Redis 自然考虑到了这一点,所以它提供了一个定长 Stream 功能。在 xadd 的指令提供一个定长长度 maxlen,就可以将老的消息干掉,确保最多不超过指定长度。

消息如果忘记 ACK 会怎样?

Stream 在每个消费者结构中保存了正在处理中的消息 ID 列表 PEL,如果消费者收到了消息处理完了但是没有回复 ack,就会导致 PEL 列表不断增长,如果有很多消费组的话,那么这个 PEL 占用的内存就会放大。所以消息要尽可能的快速消费并确认。

PEL 如何避免消息丢失?

在客户端消费者读取 Stream 消息时,Redis 服务器将消息回复给客户端的过程中,客户端突然断开了连接,消息就丢失了。但是 PEL 里已经保存了发出去的消息 ID。待客户端重新连上之后,可以再次收到 PEL 中的消息 ID 列表。不过此时 xreadgroup 的起始消息 ID 不能为参数>,而必须是任意有效的消息 ID,一般将参数设为 0-0,表示读取所有的 PEL 消息以及自last_delivered_id之后的新消息。

死信问题

如果某个消息,不能被消费者处理,也就是不能被XACK,这是要长时间处于Pending列表中,即使被反复的转移给各个消费者也是如此。此时该消息的delivery counter(通过XPENDING可以查询到)就会累加,当累加到某个我们预设的临界值时,我们就认为是坏消息(也叫死信,DeadLetter,无法投递的消息),由于有了判定条件,我们将坏消息处理掉即可,删除即可。删除一个消息,使用XDEL语法,注意,这个命令并没有删除Pending中的消息,因此查看Pending,消息还会在,可以在执行执行XDEL之后,XACK这个消息标识其处理完毕。

Stream 的高可用

Stream 的高可用是建立主从复制基础上的,它和其它数据结构的复制机制没有区别,也就是说在 Sentinel 和 Cluster 集群环境下 Stream 是可以支持高可用的。不过鉴于 Redis 的指令复制是异步的,在 failover 发生时,Redis 可能会丢失极小部分数据,这点 Redis 的其它数据结构也是一样的。

分区 Partition

Redis 的服务器没有原生支持分区能力,如果想要使用分区,那就需要分配多个 Stream,然后在客户端使用一定的策略来生产消息到不同的 Stream。

Stream小结

Stream 的消费模型借鉴了 Kafka 的消费分组的概念,它弥补了 Redis Pub/Sub 不能持久化消息的缺陷。但是它又不同于 kafka,Kafka 的消息可以分 partition,而 Stream 不行。如果非要分 parition 的话,得在客户端做,提供不同的 Stream 名称,对消息进行 hash 取模来选择往哪个 Stream 里塞。
总的来说,如果是中小项目和企业,在工作中已经使用了Redis,在业务量不是很大,而又需要消息中间件功能的情况下,可以考虑使用Redis的Stream功能。但是如果并发量很高,资源足够支持下,还是以专业的消息中间件,比如RocketMQ、Kafka等来支持业务更好。

Redis中的线程和IO模型

什么是Reactor模式 ?

“反应”器名字中”反应“的由来:
“反应”即“倒置”,“控制逆转”,具体事件处理程序不调用反应器,而向反应器注册一个事件处理器,表示自己对某些事件感兴趣,有时间来了,具体事件处理程序通过事件处理器对某个指定的事件发生做出反应;这种控制逆转又称为“好莱坞法则”(不要调用我,让我来调用你)
例如,路人甲去做男士SPA,前台的接待小姐接待了路人甲,路人甲现在只对10000技师感兴趣,但是路人甲去的比较早,就告诉接待小姐,等10000技师上班了或者是空闲了,通知我。等路人甲接到接待小姐通知,做出了反应,把10000技师占住了。
然后,路人甲想起上一次的那个10000号房间不错,设备舒适,灯光暧昧,又告诉前台的接待小姐,我对10000号房间很感兴趣,房间空出来了就告诉我,我现在先和10000这个小姐聊下人生,10000号房间空出来了,路人甲再次接到接待小姐通知,路人甲再次做出了反应。
路人甲就是具体事件处理程序,前台的接待小姐就是所谓的反应器,“10000技师上班了”和“10000号房间空闲了”就是事件,路人甲只对这两个事件感兴趣,其他,比如10001号技师或者10002号房间空闲了也是事件,但是路人甲不感兴趣。
前台的接待小姐不仅仅服务路人甲1人,他还可以同时服务路人乙、丙………,每个人所感兴趣的事件是不一样的,前台的接待小姐会根据每个人感兴趣的事件通知对应的每个人。

单线程Reactor模式流程

服务器端的Reactor是一个线程对象,该线程会启动事件循环,并使用Acceptor事件处理器关注ACCEPT事件,这样Reactor会监听客户端向服务器端发起的连接请求事件(ACCEPT事件)。
客户端向服务器端发起一个连接请求,Reactor监听到了该ACCEPT事件的发生并将该ACCEPT事件派发给相应的Acceptor处理器来进行处理。建立连接后关注的READ事件,这样一来Reactor就会监听该连接的READ事件了。
当Reactor监听到有读READ事件发生时,将相关的事件派发给对应的处理器进行处理。比如,读处理器会通过读取数据,此时read()操作可以直接读取到数据,而不会堵塞与等待可读的数据到来。
在目前的单线程Reactor模式中,不仅I/O操作在该Reactor线程上,连非I/O的业务操作也在该线程上进行处理了,这可能会大大延迟I/O请求的响应。所以我们应该将非I/O的业务逻辑操作从Reactor线程上卸载,以此来加速Reactor线程对I/O请求的响应。
5、Redis缓存设计和性能优化、stream队列、多线程_第24张图片

单线程Reactor,工作者线程池

与单线程Reactor模式不同的是,添加了一个工作者线程池,并将非I/O操作从Reactor线程中移出转交给工作者线程池来执行。这样能够提高Reactor线程的I/O响应,不至于因为一些耗时的业务逻辑而延迟对后面I/O请求的处理。
但是对于一些小容量应用场景,可以使用单线程模型,对于高负载、大并发或大数据量的应用场景却不合适,主要原因如下:
① 一个NIO线程同时处理成百上千的链路,性能上无法支撑,即便NIO线程的CPU负荷达到100%,也无法满足海量消息的读取和发送;
② 当NIO线程负载过重之后,处理速度将变慢,这会导致大量客户端连接超时,超时之后往往会进行重发,这更加重了NIO线程的负载,最终会导致大量消息积压和处理超时,成为系统的性能瓶颈;
5、Redis缓存设计和性能优化、stream队列、多线程_第25张图片

多Reactor线程模式

Reactor线程池中的每一Reactor线程都会有自己的Selector、线程和分发的事件循环逻辑。
mainReactor可以只有一个,但subReactor一般会有多个。mainReactor线程主要负责接收客户端的连接请求,然后将接收到的SocketChannel传递给subReactor,由subReactor来完成和客户端的通信。
多Reactor线程模式将“接受客户端的连接请求”和“与该客户端的通信”分在了两个Reactor线程来完成。mainReactor完成接收客户端连接请求的操作,它不负责与客户端的通信,而是将建立好的连接转交给subReactor线程来完成与客户端的通信,这样一来就不会因为read()数据量太大而导致后面的客户端连接请求得不到即时处理的情况。并且多Reactor线程模式在海量的客户端并发请求的情况下,还可以通过实现subReactor线程池来将海量的连接分发给多个subReactor线程,在多核的操作系统中这能大大提升应用的负载和吞吐量。
5、Redis缓存设计和性能优化、stream队列、多线程_第26张图片

Redis中的线程和IO概述

Redis 基于 Reactor 模式开发了自己的网络事件处理器 - 文件事件处理器(file event handler,后文简称为 FEH),而该处理器又是单线程的,所以redis设计为单线程模型。
采用I/O多路复用同时监听多个socket,根据socket当前执行的事件来为 socket 选择对应的事件处理器。
当被监听的socket准备好执行accept、read、write、close等操作时,和操作对应的文件事件就会产生,这时FEH就会调用socket之前关联好的事件处理器来处理对应事件。
所以虽然FEH是单线程运行,但通过I/O多路复用监听多个socket,不仅实现高性能的网络通信模型,又能和 Redis 服务器中其它同样单线程运行的模块交互,保证了Redis内部单线程模型的简洁设计。
下面来看文件事件处理器的几个组成部分。
5、Redis缓存设计和性能优化、stream队列、多线程_第27张图片

socket

文件事件就是对socket操作的抽象, 每当一个 socket 准备好执行连接accept、read、write、close等操作时, 就会产生一个文件事件。一个服务器通常会连接多个socket, 多个socket可能并发产生不同操作,每个操作对应不同文件事件。

I/O多路复用程序

I/O 多路复用程序会负责监听多个socket。
尽管文件事件可能并发出现, 但 I/O 多路复用程序会将所有产生事件的socket放入队列, 通过该队列以有序、同步且每次一个socket的方式向文件事件分派器传送socket。
当上一个socket产生的事件被对应事件处理器执行完后, I/O 多路复用程序才会向文件事件分派器传送下个socket, 如下:
5、Redis缓存设计和性能优化、stream队列、多线程_第28张图片

I/O多路复用程序的实现
Redis 的 I/O 多路复用程序的所有功能都是通过包装常见的 select、epoll、 evport 和 kqueue 这些 I/O 多路复用函数库实现的。
每个 I/O 多路复用函数库在 Redis 源码中都对应一个单独的文件:
因为 Redis 为每个 I/O 多路复用函数库都实现了相同的 API , 所以 I/O 多路复用程序的底层实现是可以互换的。Redis 在 I/O 多路复用程序的实现源码ae.c文件中宏定义了相应规则,使得程序在编译时自动选择系统中性能最高的 I/O 多路复用函数库作为 Redis 的 I/O 多路复用程序的底层实现:性能降序排列。
5、Redis缓存设计和性能优化、stream队列、多线程_第29张图片

注:
evport = Solaris 10
epoll = Linux
kqueue = OS X,FreeBSD
select =通常作为fallback安装在所有平台上
Evport,Epoll和KQueue具有 O(1)描述符选择算法复杂度,并且它们都使用内部内核空间内存结构.他们还可以提供很多(数十万个)文件描述符.
除其他外,select最多只能提供 1024个描述符,并且对描述符进行完全扫描(因此每次迭代所有描述符以选择一个可使用的描述符),因此复杂性是 O(n).

文件事件分派器

文件事件分派器接收 I/O 多路复用程序传来的socket, 并根据socket产生的事件类型, 调用相应的事件处理器。

文件事件处理器

服务器会为执行不同任务的套接字关联不同的事件处理器, 这些处理器是一个个函数, 它们定义了某个事件发生时, 服务器应该执行的动作。
Redis 为各种文件事件需求编写了多个处理器,若客户端连接Redis,对连接服务器的各个客户端进行应答,就需要将socket映射到连接应答处理器写数据到Redis,接收客户端传来的命令请求,就需要映射到命令请求处理器从Redis读数据,向客户端返回命令的执行结果,就需要映射到命令回复处理器当主服务器和从服务器进行复制操作时, 主从服务器都需要映射到特别为复制功能编写的复制处理器。

文件事件的类型

I/O 多路复用程序可以监听多个socket的 ae.h/AE_READABLE 事件和 ae.h/AE_WRITABLE 事件, 这两类事件和套接字操作之间的对应关系如下:
当socket可读(比如客户端对Redis执行write/close操作),或有新的可应答的socket出现时(即客户端对Redis执行connect操作),socket就会产生一个AE_READABLE事件。
当socket可写时(比如客户端对Redis执行read操作),socket会产生一个AE_WRITABLE事件。
I/O多路复用程序可以同时监听AE_REABLE和AE_WRITABLE两种事件,要是一个socket同时产生这两种事件,那么文件事件分派器优先处理AE_REABLE事件。即一个socket又可读又可写时, Redis服务器先读后写socket。

总结

最后,让我们梳理一下客户端和Redis服务器通信的整个过程:
Redis启动初始化时,将连接应答处理器跟AE_READABLE事件关联。
若一个客户端发起连接,会产生一个AE_READABLE事件,然后由连接应答处理器负责和客户端建立连接,创建客户端对应的socket,同时将这个socket的AE_READABLE事件和命令请求处理器关联,使得客户端可以向主服务器发送命令请求。
当客户端向Redis发请求时(不管读还是写请求),客户端socket都会产生一个AE_READABLE事件,触发命令请求处理器。处理器读取客户端的命令内容, 然后传给相关程序执行。
当Redis服务器准备好给客户端的响应数据后,会将socket的AE_WRITABLE事件和命令回复处理器关联,当客户端准备好读取响应数据时,会在socket产生一个AE_WRITABLE事件,由对应命令回复处理器处理,即将准备好的响应数据写入socket,供客户端读取。
命令回复处理器全部写完到 socket 后,就会删除该socket的AE_WRITABLE事件和命令回复处理器的映射。

Redis6中的多线程

1. Redis6.0之前的版本真的是单线程吗?

Redis在处理客户端的请求时,包括获取 (socket 读)、解析、执行、内容返回 (socket 写) 等都由一个顺序串行的主线程处理,这就是所谓的“单线程”。但如果严格来讲从Redis4.0之后并不是单线程,除了主线程外,它也有后台线程在处理一些较为缓慢的操作,例如清理脏数据、无用连接的释放、大 key 的删除等等。

2. Redis6.0之前为什么一直不使用多线程?

官方曾做过类似问题的回复:使用Redis时,几乎不存在CPU成为瓶颈的情况, Redis主要受限于内存和网络。例如在一个普通的Linux系统上,Redis通过使用pipelining每秒可以处理100万个请求,所以如果应用程序主要使用O(N)或O(log(N))的命令,它几乎不会占用太多CPU。
使用了单线程后,可维护性高。多线程模型虽然在某些方面表现优异,但是它却引入了程序执行顺序的不确定性,带来了并发读写的一系列问题,增加了系统复杂度、同时可能存在线程切换、甚至加锁解锁、死锁造成的性能损耗。Redis通过AE事件模型以及IO多路复用等技术,处理性能非常高,因此没有必要使用多线程。单线程机制使得 Redis 内部实现的复杂度大大降低,Hash 的惰性 Rehash、Lpush 等等 “线程不安全” 的命令都可以无锁进行。

3. Redis6.0为什么要引入多线程呢?

Redis将所有数据放在内存中,内存的响应时长大约为100纳秒,对于小数据包,Redis服务器可以处理80,000到100,000 QPS,这也是Redis处理的极限了,对于80%的公司来说,单线程的Redis已经足够使用了。
但随着越来越复杂的业务场景,有些公司动不动就上亿的交易量,因此需要更大的QPS。常见的解决方案是在分布式架构中对数据进行分区并采用多个服务器,但该方案有非常大的缺点,例如要管理的Redis服务器太多,维护代价大;某些适用于单个Redis服务器的命令不适用于数据分区;数据分区无法解决热点读/写问题;数据偏斜,重新分配和放大/缩小变得更加复杂等等。
从Redis自身角度来说,因为读写网络的read/write系统调用占用了Redis执行期间大部分CPU时间,瓶颈主要在于网络的 IO 消耗, 优化主要有两个方向:
• 提高网络 IO 性能,典型的实现比如使用 DPDK 来替代内核网络栈的方式
• 使用多线程充分利用多核,典型的实现比如 Memcached。
协议栈优化的这种方式跟 Redis 关系不大,支持多线程是一种最有效最便捷的操作方式。所以总结起来,redis支持多线程主要就是两个原因:
• 可以充分利用服务器 CPU 资源,目前主线程只能利用一个核
• 多线程任务可以分摊 Redis 同步 IO 读写负荷

4.Redis6.0默认是否开启了多线程?

Redis6.0的多线程默认是禁用的,只使用主线程。如需开启需要修改redis.conf配置文件:io-threads-do-reads yes
5、Redis缓存设计和性能优化、stream队列、多线程_第30张图片

开启多线程后,还需要设置线程数,否则是不生效的。
关于线程数的设置,官方有一个建议:4核的机器建议设置为2或3个线程,8核的建议设置为6个线程,线程数一定要小于机器核数。还需要注意的是,线程数并不是越大越好,官方认为超过了8个基本就没什么意义了。

5.Redis6.0采用多线程后,性能的提升效果如何?

Redis 作者 antirez 在 RedisConf 2019分享时曾提到:Redis 6 引入的多线程 IO 特性对性能提升至少是一倍以上。国内也有大牛曾使用unstable版本在阿里云esc进行过测试,GET/SET 命令在4线程 IO时性能相比单线程是几乎是翻倍了。如果开启多线程,至少要4核的机器,且Redis实例已经占用相当大的CPU耗时的时候才建议采用,否则使用多线程没有意义。

6.Redis6.0多线程的实现机制?

流程简述如下:
1、主线程负责接收建立连接请求,获取 socket 放入全局等待读处理队列
2、主线程处理完读事件之后,通过 RR(Round Robin) 将这些连接分配给这些 IO 线程
3、主线程阻塞等待 IO 线程读取 socket 完毕
4、主线程通过单线程的方式执行请求命令,请求数据读取并解析完成,但并不执行回写 socket
5、主线程阻塞等待 IO 线程将数据回写 socket 完毕
6、解除绑定,清空等待队列
该设计有如下特点:
1、IO 线程要么同时在读 socket,要么同时在写,不会同时读或写
2、IO 线程只负责读写 socket 解析命令,不负责命令处理

7.开启多线程后,是否会存在线程并发安全问题?

从上面的实现机制可以看出,Redis的多线程部分只是用来处理网络数据的读写和协议解析,执行命令仍然是单线程顺序执行。所以我们不需要去考虑控制 key、lua、事务,LPUSH/LPOP 等等的并发及线程安全问题。

8.Redis6.0的多线程和Memcached多线程模型进行对比

Memcached 服务器采用 master-woker 模式进行工作,服务端采用 socket 与客户端通讯。主线程、工作线程 采用 pipe管道进行通讯。主线程采用 libevent 监听 listen、accept 的读事件,事件响应后将连接信息的数据结构封装起来,根据算法选择合适的工作线程,将连接任务携带连接信息分发出去,相应的线程利用连接描述符建立与客户端的socket连接 并进行后续的存取数据操作。
相同点:都采用了 master线程-worker 线程的模型
不同点:Memcached 执行主逻辑也是在 worker 线程里,模型更加简单,实现了真正的线程隔离,符合我们对线程隔离的常规理解。而 Redis 把处理逻辑交还给 master 线程,虽然一定程度上增加了模型复杂度,但也解决了线程并发安全等问题

你可能感兴趣的:(Redis,缓存,redis,性能优化)