简单
给你一个下标从 0 开始的整数数组 nums
。
如果下标三元组 (i, j, k)
满足下述全部条件,则认为它是一个 山形三元组 :
i < j < k
nums[i] < nums[j]
且 nums[k] < nums[j]
请你找出 nums
中 元素和最小 的山形三元组,并返回其 元素和 。如果不存在满足条件的三元组,返回 -1
。
示例 1:
输入:nums = [8,6,1,5,3]
输出:9
解释:三元组 (2, 3, 4) 是一个元素和等于 9 的山形三元组,因为:
- 2 < 3 < 4
- nums[2] < nums[3] 且 nums[4] < nums[3]
这个三元组的元素和等于 nums[2] + nums[3] + nums[4] = 9 。可以证明不存在元素和小于 9 的山形三元组。
示例 2:
输入:nums = [5,4,8,7,10,2]
输出:13
解释:三元组 (1, 3, 5) 是一个元素和等于 13 的山形三元组,因为:
- 1 < 3 < 5
- nums[1] < nums[3] 且 nums[5] < nums[3]
这个三元组的元素和等于 nums[1] + nums[3] + nums[5] = 13 。可以证明不存在元素和小于 13 的山形三元组。
示例 3:
输入:nums = [6,5,4,3,4,5]
输出:-1
解释:可以证明 nums 中不存在山形三元组。
提示:
3 <= nums.length <= 50
1 <= nums[i] <= 50
class Solution {
public int minimumSum(int[] nums) {
int n = nums.length;
int res = -1;
for(int i = 0; i < n; i++){
for(int j = i+1; j < n; j++){
for(int k = j+1; k < n; k++){
if(nums[i] < nums[j] && nums[k] < nums[j]){
if(res != -1)
res = Math.min(res, nums[i] + nums[j] + nums[k] );
else res = nums[i] + nums[j] + nums[k];
}
}
}
}
return res;
}
}
中等
给你一个下标从 0 开始的整数数组 nums
。
如果下标三元组 (i, j, k)
满足下述全部条件,则认为它是一个 山形三元组 :
i < j < k
nums[i] < nums[j]
且 nums[k] < nums[j]
请你找出 nums
中 元素和最小 的山形三元组,并返回其 元素和 。如果不存在满足条件的三元组,返回 -1
。
示例 1:
输入:nums = [8,6,1,5,3]
输出:9
解释:三元组 (2, 3, 4) 是一个元素和等于 9 的山形三元组,因为:
- 2 < 3 < 4
- nums[2] < nums[3] 且 nums[4] < nums[3]
这个三元组的元素和等于 nums[2] + nums[3] + nums[4] = 9 。可以证明不存在元素和小于 9 的山形三元组。
示例 2:
输入:nums = [5,4,8,7,10,2]
输出:13
解释:三元组 (1, 3, 5) 是一个元素和等于 13 的山形三元组,因为:
- 1 < 3 < 5
- nums[1] < nums[3] 且 nums[5] < nums[3]
这个三元组的元素和等于 nums[1] + nums[3] + nums[5] = 13 。可以证明不存在元素和小于 13 的山形三元组。
示例 3:
输入:nums = [6,5,4,3,4,5]
输出:-1
解释:可以证明 nums 中不存在山形三元组。
提示:
3 <= nums.length <= 105
1 <= nums[i] <= 108
class Solution {
public int minimumSum(int[] nums) {
int n = nums.length;
int[] pre = new int[n+1];
int[] suf = new int[n+1];
pre[0] = Integer.MAX_VALUE;
for(int i = 0; i < n; i++){
pre[i+1] = Math.min(pre[i], nums[i]);
}
suf[n] = Integer.MAX_VALUE;
for(int i = n-1; i >= 0; i--){
suf[i] = Math.min(suf[i+1], nums[i]);
}
int res = -1;
for(int i = 1; i < n-1; i++){
if(nums[i] > pre[i] && nums[i] > suf[i+1]){
if(res == -1) res = nums[i] + pre[i] + suf[i+1];
else res = Math.min(res, nums[i] + pre[i] + suf[i+1]);
}
}
return res;
}
}
中等
给你一个长度为 n
下标从 0 开始的整数数组 nums
。
我们想将下标进行分组,使得 [0, n - 1]
内所有下标 i
都 恰好 被分到其中一组。
如果以下条件成立,我们说这个分组方案是合法的:
g
,同一组内所有下标在 nums
中对应的数值都相等。g1
和 g2
,两个组中 下标数量 的 差值不超过 1
。请你返回一个整数,表示得到一个合法分组方案的 最少 组数。
示例 1:
输入:nums = [3,2,3,2,3]
输出:2
解释:一个得到 2 个分组的方案如下,中括号内的数字都是下标:
组 1 -> [0,2,4]
组 2 -> [1,3]
所有下标都只属于一个组。
组 1 中,nums[0] == nums[2] == nums[4] ,所有下标对应的数值都相等。
组 2 中,nums[1] == nums[3] ,所有下标对应的数值都相等。
组 1 中下标数目为 3 ,组 2 中下标数目为 2 。
两者之差不超过 1 。
无法得到一个小于 2 组的答案,因为如果只有 1 组,组内所有下标对应的数值都要相等。
所以答案为 2 。
示例 2:
输入:nums = [10,10,10,3,1,1]
输出:4
解释:一个得到 2 个分组的方案如下,中括号内的数字都是下标:
组 1 -> [0]
组 2 -> [1,2]
组 3 -> [3]
组 4 -> [4,5]
分组方案满足题目要求的两个条件。
无法得到一个小于 4 组的答案。
所以答案为 4 。
提示:
1 <= nums.length <= 105
1 <= nums[i] <= 109
https://leetcode.cn/problems/minimum-number-of-groups-to-create-a-valid-assignment/solutions/2493313/ben-ti-zui-jian-dan-xie-fa-pythonjavacgo-t174/
class Solution {
// 假设cnt[x] = 32,k = 10
// 可以分为3个组
// cnt[x] = 34,多出来的4无法加到其他三个10中
// cnt[x] 可以分出多少组? cnt[x]/(k+1)上取整
// a/b上取整 = (a+b-1)/b
public int minGroupsForValidAssignment(int[] nums) {
Map<Integer, Integer> cnt = new HashMap<>();
for (int x : nums) {
cnt.merge(x, 1, Integer::sum);
}
int k = nums.length;
for (var c : cnt.values()) {
k = Math.min(k, c);
}
for (; ; k--) { // 枚举组内最少k个数字(k 或 k+1个数字)
int ans = 0; // 枚举答案
for (int c : cnt.values()) {
if (c / k < c % k) {
ans = 0;
break;
}
ans += (c + k) / (k + 1);
}
if (ans > 0) {
return ans;
}
}
}
}
困难
给你一个字符串 s
和一个整数 k
,请你将 s
分成 k
个 子字符串 ,使得每个 子字符串 变成 半回文串 需要修改的字符数目最少。
请你返回一个整数,表示需要修改的 最少 字符数目。
注意:
len
的字符串存在一个满足 1 <= d < len
的正整数 d
,len % d == 0
成立且所有对 d
做除法余数相同的下标对应的字符连起来得到的字符串都是 回文串 ,那么我们说这个字符串是 半回文串 。比方说 "aa"
,"aba"
,"adbgad"
和 "abab"
都是 半回文串 ,而 "a"
,"ab"
和 "abca"
不是。示例 1:
输入:s = "abcac", k = 2
输出:1
解释:我们可以将 s 分成子字符串 "ab" 和 "cac" 。子字符串 "cac" 已经是半回文串。如果我们将 "ab" 变成 "aa" ,它也会变成一个 d = 1 的半回文串。
该方案是将 s 分成 2 个子字符串的前提下,得到 2 个半回文子字符串需要的最少修改次数。所以答案为 1 。
示例 2:
输入:s = "abcdef", k = 2
输出:2
解释:我们可以将 s 分成子字符串 "abc" 和 "def" 。子字符串 "abc" 和 "def" 都需要修改一个字符得到半回文串,所以我们总共需要 2 次字符修改使所有子字符串变成半回文串。
该方案是将 s 分成 2 个子字符串的前提下,得到 2 个半回文子字符串需要的最少修改次数。所以答案为 2 。
示例 3:
输入:s = "aabbaa", k = 3
输出:0
解释:我们可以将 s 分成子字符串 "aa" ,"bb" 和 "aa" 。
字符串 "aa" 和 "bb" 都已经是半回文串了。所以答案为 0 。
提示:
2 <= s.length <= 200
1 <= k <= s.length / 2
s
只包含小写英文字母。https://leetcode.cn/problems/minimum-changes-to-make-k-semi-palindromes/solutions/2493147/yu-chu-li-ji-yi-hua-sou-suo-by-endlessch-qp47/
class Solution {
private static final int MX = 201;
private static final List<Integer>[] divisors = new ArrayList[MX];
static {
// 预处理每个数的真因子,时间复杂度 O(MX*logMX)
Arrays.setAll(divisors, k -> new ArrayList<>());
for (int i = 1; i < MX; i++) {
for (int j = i * 2; j < MX; j += i) {
divisors[j].add(i);
}
}
}
int[][] cache;
int[][] modify;
public int minimumChanges(String s, int k) {
int n = s.length();
// modify[i][j] 表示 修改s[i:j+1]的成为半回文串的最少操作次数
modify = new int[n-1][n];
for(int left = 0; left < n-1; left++){
for(int right = left + 1; right < n; right++)
modify[left][right] = getModify(s.substring(left, right+1));
}
// 划分DP
cache = new int[k][n];
for(int i = 0; i < k; i++){
Arrays.fill(cache[i], -1);
}
return dfs(k-1, n-1);
}
// 定义 dfs(i, j) 表示在s[:j]中还需要划分i个区间,修改最少次数。
public int dfs(int i, int j){
if(i == 0){
return modify[0][j];
}
if(cache[i][j] >= 0) return cache[i][j];
int res = Integer.MAX_VALUE;
for(int L = i * 2; L < j; L++){
// 划分区间(L,j)
res = Math.min(res, dfs(i-1, L-1) + modify[L][j]);
}
return cache[i][j] = res;
}
// 使字符串s成为半回文串的最小修改次数
private int getModify(String S){
char[] s = S.toCharArray();
int n = s.length;
int res = n;
for(int d : divisors[n]){
int cnt = 0;
for(int i0 = 0; i0 < d; i0++){ // 枚举所有起点
for(int i = i0, j = n - d + i0; i < j; i += d, j -= d){
if(s[i] != s[j])
cnt += 1;
}
}
res = Math.min(res, cnt);
}
return res;
}
}