Kafka Consumer多线程消费

01 概述

关于Kafka Java Consumer多线程消费的实现,多个线程可能拿到相同分区的数据,而消费的顺序会破坏消息本身在分区中的顺序,因而扰乱位移的提交。

使用KafkaConsumer的pause和resume方法来防止这种情形的发生。另外,本次我会编写一个测试类用于验证消费相同数量消息时,单线程消费速度要远逊于多线程消费。

这一次,我编写了5个java文件,它们分别是:

OrdinaryConsumer.java:普通的单线程Consumer,用于后面进行性能测试对比用。

ConsumerWorker.java:多线程消息处理类,本质上就是一个Runnable。会被提交给线程池用于实际消息处理。

MultiThreadedConsumer.java:多线程Consumer主控类,用于将消息分配给不同的ConsumerWorker,并且管理位移的提交。

MultiThreadedRebalanceListener.java:为多线程Consumer服务的Rebalance监听器。

Test.java:用于测试单线程和多线程性能。

02 OrdinaryConsumer类

单线程的Consumer最简单,我首先给出它的代码:

package huxihx.mtc;

import org.apache.kafka.clients.consumer.Consumer;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.serialization.StringDeserializer;

import java.time.Duration;
import java.util.Collections;
import java.util.Properties;
import java.util.concurrent.ThreadLocalRandom;

/**
 * 单线程Consumer
 */
public class OrdinaryConsumer {

    private final Consumer<String, String> consumer;
    private final int expectedCount; // 用于测试的消息数量

    public OrdinaryConsumer(String brokerId, String topic, String groupID, int expectedCount) {
        Properties props = new Properties();
        props.setProperty(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, brokerId);
        props.setProperty(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
        props.setProperty(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
        props.setProperty(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "true");
        props.setProperty(ConsumerConfig.GROUP_ID_CONFIG, groupID);
        props.setProperty(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
        consumer = new KafkaConsumer<>(props);
        consumer.subscribe(Collections.singletonList(topic));
        this.expectedCount = expectedCount;
    }

    public void run() {
        try {
            int alreadyConsumed = 0;
            while (alreadyConsumed < expectedCount) {
                ConsumerRecords<String, String> records = consumer.poll(Duration.ofSeconds(1));
                alreadyConsumed += records.count();
                records.forEach(this::handleRecord);
            }
        } finally {
            consumer.close();
        }
    }

    private void handleRecord(ConsumerRecord<String, String> record) {
        try {
            // 模拟每条消息10毫秒处理
            Thread.sleep(ThreadLocalRandom.current().nextInt(10));
        } catch (InterruptedException ignored) {
            Thread.currentThread().interrupt();
        }
        System.out.println(Thread.currentThread().getName() + " finished message processed. Record offset = " + record.offset());
    }
} 

代码很简单,没什么可说的。唯一要说的是Consumer会模拟10毫秒处理一条事件。后面多线程Consumer我们也会使用相同的标准。

03 ConsumerWorker类

接下来是消息处理的Runnable类:ConsumerWorker。和上一篇相比,这次最大的不同在于每个Worker只处理相同分区下的消息,而不是向之前那样处理多个分区中的消息。

这样做的好处在于一旦某个分区的消息分配给了这个Worker,我可以暂停这个分区的可消费状态,直到这个Worker全部处理完成。如果是混着多个分区的消息一起处理,实现这个就比较困难。

ConsumerWorker代码如下:

package huxihx.mtc;

import org.apache.kafka.clients.consumer.ConsumerRecord;

import java.util.List;
import java.util.concurrent.CompletableFuture;
import java.util.concurrent.ThreadLocalRandom;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicLong;
import java.util.concurrent.locks.ReentrantLock;

public class ConsumerWorker<K, V> {

    private final List<ConsumerRecord<K, V>> recordsOfSamePartition;
    private volatile boolean started = false;
    private volatile boolean stopped = false;
    private final ReentrantLock lock = new ReentrantLock();

    private final long INVALID_COMMITTED_OFFSET = -1L;
    private final AtomicLong latestProcessedOffset = new AtomicLong(INVALID_COMMITTED_OFFSET);
    private final CompletableFuture<Long> future = new CompletableFuture<>();

    public ConsumerWorker(List<ConsumerRecord<K, V>> recordsOfSamePartition) {
        this.recordsOfSamePartition = recordsOfSamePartition;
    }

    public boolean run() {
        lock.lock();
        if (stopped)
            return false;
        started = true;
        lock.unlock();
        for (ConsumerRecord<K, V> record : recordsOfSamePartition) {
            if (stopped)
                break;
            handleRecord(record);
            if (latestProcessedOffset.get() < record.offset() + 1)
                latestProcessedOffset.set(record.offset() + 1);
        }
        return future.complete(latestProcessedOffset.get());
    }

    public long getLatestProcessedOffset() {
        return latestProcessedOffset.get();
    }

    private void handleRecord(ConsumerRecord<K, V> record) {
        try {
            Thread.sleep(ThreadLocalRandom.current().nextInt(10));
        } catch (InterruptedException ignored) {
            Thread.currentThread().interrupt();
        }
        System.out.println(Thread.currentThread().getName() + " finished message processed. Record offset = " + record.offset());
    }

    public void close() {
        lock.lock();
        this.stopped = true;
        if (!started) {
            future.complete(latestProcessedOffset.get());
        }
        lock.unlock();
    }

    public boolean isFinished() {
        return future.isDone();
    }

    public long waitForCompletion(long timeout, TimeUnit timeUnit) {
        try {
            return future.get(timeout, timeUnit);
        } catch (Exception e) {
            if (e instanceof InterruptedException)
                Thread.currentThread().interrupt();
            return INVALID_COMMITTED_OFFSET;
        }
    }
}

需要说明的地方有以下几点:
latestProcessedOffset:使用这个变量保存该Worker当前已消费的最新位移。

future:使用CompletableFuture来保存Worker要提交的位移。
Worker成功操作与否的标志就是看这个future是否将latestProcessedOffset值封装到结果中。

handleRecord和单线程Consumer中的一致,模拟10ms处理消息。

04 MultiThreadedConsumer类

构建好了ConsumerWorker类之后,下面是编写多线程Consumer的主控类,该类循环执行:
1、创建Consumer;
2、读取订阅分区的消息;
3、将消息按照不同分区进行归组分发给不同的线程;
4、暂停这些分区的后续消费,同时等待Worker线程完成消息处理;
5、提交这些分区的位移;
6、恢复这些分区的消费。

以下代码是MultiThreadedConsumer类的完整代码:

package huxihx.mtc;

import org.apache.kafka.clients.consumer.Consumer;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.clients.consumer.OffsetAndMetadata;
import org.apache.kafka.common.TopicPartition;
import org.apache.kafka.common.serialization.StringDeserializer;

import java.time.Duration;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.Properties;
import java.util.Set;
import java.util.concurrent.CompletableFuture;
import java.util.concurrent.Executor;
import java.util.concurrent.Executors;

public class MultiThreadedConsumer {

    private final Map<TopicPartition, ConsumerWorker<String, String>> outstandingWorkers = new HashMap<>();
    private final Map<TopicPartition, OffsetAndMetadata> offsetsToCommit = new HashMap<>();
    private long lastCommitTime = System.currentTimeMillis();
    private final Consumer<String, String> consumer;
    private final int DEFAULT_COMMIT_INTERVAL = 3000;
    private final Map<TopicPartition, Long> currentConsumedOffsets = new HashMap<>();
    private final long expectedCount;

    private final static Executor executor = Executors.newFixedThreadPool(
            Runtime.getRuntime().availableProcessors() * 10, r -> {
                Thread t = new Thread(r);
                t.setDaemon(true);
                return t;
            });

    public MultiThreadedConsumer(String brokerId, String topic, String groupID, long expectedCount) {
        Properties props = new Properties();
        props.setProperty(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, brokerId);
        props.setProperty(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
        props.setProperty(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
        props.setProperty(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "false");
        props.setProperty(ConsumerConfig.GROUP_ID_CONFIG, groupID);
        props.setProperty(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
        consumer = new KafkaConsumer<>(props);
        consumer.subscribe(Collections.singletonList(topic), new MultiThreadedRebalanceListener(consumer, outstandingWorkers, offsetsToCommit));
        this.expectedCount = expectedCount;
    }

    public void run() {
        try {
            while (true) {
                ConsumerRecords<String, String> records = consumer.poll(Duration.ofSeconds(1));
                distributeRecords(records);
                checkOutstandingWorkers();
                commitOffsets();
                if (currentConsumedOffsets.values().stream().mapToLong(Long::longValue).sum() >= expectedCount) {
                    break;
                }
            }
        } finally {
            consumer.close();
        }
    }

    /**
     * 对已完成消息处理并提交位移的分区执行resume操作
     */
    private void checkOutstandingWorkers() {
        Set<TopicPartition> completedPartitions = new HashSet<>();
        outstandingWorkers.forEach((tp, worker) -> {
            if (worker.isFinished()) {
                completedPartitions.add(tp);
            }
            long offset = worker.getLatestProcessedOffset();
            currentConsumedOffsets.put(tp, offset);
            if (offset > 0L) {
                offsetsToCommit.put(tp, new OffsetAndMetadata(offset));
            }
        });
        completedPartitions.forEach(outstandingWorkers::remove);
        consumer.resume(completedPartitions);
    }

    /**
     * 提交位移
     */
    private void commitOffsets() {
        try {
            long currentTime = System.currentTimeMillis();
            if (currentTime - lastCommitTime > DEFAULT_COMMIT_INTERVAL && !offsetsToCommit.isEmpty()) {
                consumer.commitSync(offsetsToCommit);
                offsetsToCommit.clear();
            }
            lastCommitTime = currentTime;
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

    /**
     * 将不同分区的消息交由不同的线程,同时暂停该分区消息消费
     * @param records
     */
    private void distributeRecords(ConsumerRecords<String, String> records) {
        if (records.isEmpty())
            return;
        Set<TopicPartition> pausedPartitions = new HashSet<>();
        records.partitions().forEach(tp -> {
            List<ConsumerRecord<String, String>> partitionedRecords = records.records(tp);
            pausedPartitions.add(tp);
            final ConsumerWorker<String, String> worker = new ConsumerWorker<>(partitionedRecords);
            CompletableFuture.supplyAsync(worker::run, executor);
            outstandingWorkers.put(tp, worker);
        });
        consumer.pause(pausedPartitions);
    }
}

该类代码需要说明的地方包括:
executor:我创建了一个包含10倍CPU核数的线程数。具体线程数根据你自己的业务需求而定。如果你的事件处理逻辑是I/O密集型操作(比如写入外部系统),那么设置一个大一点的线程数通常都是有意义的。当然,我个人觉得最好不要超过Consumer分配到的总分区数。

一定要将自动提交位移的参数设置为false。多线程Consumer的一个关键设计就是要手动提交位移。

Rebalance监听器设置为MultiThreadedRebalanceListener。这个类如何响应分区的回收与分配我们稍后讨论。

run方法的逻辑基本上遵循了上面提到的流程:消息获取 -> 分发 -> 检查消费进度 -> 提交消费位移(offset)

expectedCount:这是为了后面进行性能测试比对用到的总消息消费数。

05 MultiThreadedRebalanceListener类

多线程Consumer在Rebalance操作开启后要小心处理。

首先,主线程的poll方法与Worker线程处理消息是并行执行的。

此时如果发生Rebalance,那么有些分区就会被分配给其他Consumer,但Worker线程依然可能正在处理这些分区。

因此,就可能出现这样的场景:两个Consumer都会处理这些分区中的消息。这就破坏了消费者组的设计理念。针对这种情况,我们必须要确保要被回收的那些分区的处理必须首先完成,之后才能被重新分配。

总体而言,在要回收分区前,多线程Consumer必须完成:

1.停止对应的Worker线程

2.提交位移

当然,一旦分区被重新分配后,事情就变得简单了,我们调用resume恢复这些分区的可消费状态即可。如果这些分区之前就是可以消费的,那么调用resume方法就没有任何效果,总之是一个“无害”操作。

MultiThreadedRebalanceListener类完整代码如下:

package huxihx.mtc;

import org.apache.kafka.clients.consumer.Consumer;
import org.apache.kafka.clients.consumer.ConsumerRebalanceListener;
import org.apache.kafka.clients.consumer.OffsetAndMetadata;
import org.apache.kafka.common.TopicPartition;

import java.util.Collection;
import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.TimeUnit;

public class MultiThreadedRebalanceListener implements ConsumerRebalanceListener {

    private final Consumer<String, String> consumer;
    private final Map<TopicPartition, ConsumerWorker<String, String>> outstandingWorkers;
    private final Map<TopicPartition, OffsetAndMetadata> offsets;

    public MultiThreadedRebalanceListener(Consumer<String, String> consumer,
                                          Map<TopicPartition, ConsumerWorker<String, String>> outstandingWorkers,
                                          Map<TopicPartition, OffsetAndMetadata> offsets) {
        this.consumer = consumer;
        this.outstandingWorkers = outstandingWorkers;
        this.offsets = offsets;
    }

    @Override
    public void onPartitionsRevoked(Collection<TopicPartition> partitions) {
        Map<TopicPartition, ConsumerWorker<String, String>> stoppedWorkers = new HashMap<>();
        for (TopicPartition tp : partitions) {
            ConsumerWorker<String, String> worker = outstandingWorkers.remove(tp);
            if (worker != null) {
                worker.close();
                stoppedWorkers.put(tp, worker);
            }
        }

        stoppedWorkers.forEach((tp, worker) -> {
            long offset = worker.waitForCompletion(1, TimeUnit.SECONDS);
            if (offset > 0L) {
                offsets.put(tp, new OffsetAndMetadata(offset));
            }
        });

        Map<TopicPartition, OffsetAndMetadata> revokedOffsets = new HashMap<>();
        partitions.forEach(tp -> {
            OffsetAndMetadata offset = offsets.remove(tp);
            if (offset != null) {
                revokedOffsets.put(tp, offset);
            }
        });

        try {
            consumer.commitSync(revokedOffsets);
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

    @Override
    public void onPartitionsAssigned(Collection<TopicPartition> partitions) {
        consumer.resume(partitions);
    }
}

该类代码需要说明的地方包括:

任何Rebalance监听器都要实现ConsumerRebalanceListener接口。

该类定义了3个字段,分别保存Consumer实例、要停掉的Worker线程实例以及要提交的位移数据。

主要的逻辑在onPartitionsRevoked方法中实现。第一步是停掉Worker线程;第二步是手动提交位移。

06 Test类

说完了以上4个Java类之后,现在我们编写一个测试类来比较单线程Consumer和多线程Consumer的性能对比。

首先我们创建一个topic,50个分区,单副本,并使用kafka-producer-perf-test工具创建5万条消息,每个分区1000条。

之后编写如下代码分别测试两个Consumer的消费耗时:

package huxihx.mtc;
 
public class Test {
    public static void main(String[] args) throws InterruptedException {
        int expectedCount = 50 * 900;
        String brokerId = "localhost:9092";
        String groupId = "test-group";
        String topic = "test";
 
        OrdinaryConsumer consumer = new OrdinaryConsumer(brokerId, topic, groupId + "-single", expectedCount);
        long start = System.currentTimeMillis();
        consumer.run();
        System.out.println("Single-threaded consumer costs " + (System.currentTimeMillis() - start));
 
        Thread.sleep(1L);
 
        MultiThreadedConsumer multiThreadedConsumer =
                new MultiThreadedConsumer(brokerId, topic, groupId + "-multi", expectedCount);
        start = System.currentTimeMillis();
        multiThreadedConsumer.run();
        System.out.println("Multi-threaded consumer costs " + (System.currentTimeMillis() - start));
    }
}

最后结果显示。单线程Consumer消费45000条消息共耗时232秒,而多线程Consumer耗时6.2秒,如下:

  • Single-threaded consumer costs 232336
  • Multi-threaded consumer costs 6246

显然,采用多线程Consumer的消费性能大约是单线程Consumer的37倍。当然实际的提升效果依具体环境而定。

不过结论是肯定的,多线程Consumer在CPU核数很多且消息处理逻辑为I/O密集型操作的情形下会比单线程Consumer表现更好。

你可能感兴趣的:(大数据)