关于Kafka Java Consumer多线程消费的实现,多个线程可能拿到相同分区的数据,而消费的顺序会破坏消息本身在分区中的顺序,因而扰乱位移的提交。
使用KafkaConsumer的pause和resume方法来防止这种情形的发生。另外,本次我会编写一个测试类用于验证消费相同数量消息时,单线程消费速度要远逊于多线程消费。
这一次,我编写了5个java文件,它们分别是:
OrdinaryConsumer.java:普通的单线程Consumer,用于后面进行性能测试对比用。
ConsumerWorker.java:多线程消息处理类,本质上就是一个Runnable。会被提交给线程池用于实际消息处理。
MultiThreadedConsumer.java:多线程Consumer主控类,用于将消息分配给不同的ConsumerWorker,并且管理位移的提交。
MultiThreadedRebalanceListener.java:为多线程Consumer服务的Rebalance监听器。
Test.java:用于测试单线程和多线程性能。
单线程的Consumer最简单,我首先给出它的代码:
package huxihx.mtc;
import org.apache.kafka.clients.consumer.Consumer;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.serialization.StringDeserializer;
import java.time.Duration;
import java.util.Collections;
import java.util.Properties;
import java.util.concurrent.ThreadLocalRandom;
/**
* 单线程Consumer
*/
public class OrdinaryConsumer {
private final Consumer<String, String> consumer;
private final int expectedCount; // 用于测试的消息数量
public OrdinaryConsumer(String brokerId, String topic, String groupID, int expectedCount) {
Properties props = new Properties();
props.setProperty(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, brokerId);
props.setProperty(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
props.setProperty(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
props.setProperty(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "true");
props.setProperty(ConsumerConfig.GROUP_ID_CONFIG, groupID);
props.setProperty(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
consumer = new KafkaConsumer<>(props);
consumer.subscribe(Collections.singletonList(topic));
this.expectedCount = expectedCount;
}
public void run() {
try {
int alreadyConsumed = 0;
while (alreadyConsumed < expectedCount) {
ConsumerRecords<String, String> records = consumer.poll(Duration.ofSeconds(1));
alreadyConsumed += records.count();
records.forEach(this::handleRecord);
}
} finally {
consumer.close();
}
}
private void handleRecord(ConsumerRecord<String, String> record) {
try {
// 模拟每条消息10毫秒处理
Thread.sleep(ThreadLocalRandom.current().nextInt(10));
} catch (InterruptedException ignored) {
Thread.currentThread().interrupt();
}
System.out.println(Thread.currentThread().getName() + " finished message processed. Record offset = " + record.offset());
}
}
代码很简单,没什么可说的。唯一要说的是Consumer会模拟10毫秒处理一条事件。后面多线程Consumer我们也会使用相同的标准。
接下来是消息处理的Runnable类:ConsumerWorker。和上一篇相比,这次最大的不同在于每个Worker只处理相同分区下的消息,而不是向之前那样处理多个分区中的消息。
这样做的好处在于一旦某个分区的消息分配给了这个Worker,我可以暂停这个分区的可消费状态,直到这个Worker全部处理完成。如果是混着多个分区的消息一起处理,实现这个就比较困难。
ConsumerWorker代码如下:
package huxihx.mtc;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import java.util.List;
import java.util.concurrent.CompletableFuture;
import java.util.concurrent.ThreadLocalRandom;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicLong;
import java.util.concurrent.locks.ReentrantLock;
public class ConsumerWorker<K, V> {
private final List<ConsumerRecord<K, V>> recordsOfSamePartition;
private volatile boolean started = false;
private volatile boolean stopped = false;
private final ReentrantLock lock = new ReentrantLock();
private final long INVALID_COMMITTED_OFFSET = -1L;
private final AtomicLong latestProcessedOffset = new AtomicLong(INVALID_COMMITTED_OFFSET);
private final CompletableFuture<Long> future = new CompletableFuture<>();
public ConsumerWorker(List<ConsumerRecord<K, V>> recordsOfSamePartition) {
this.recordsOfSamePartition = recordsOfSamePartition;
}
public boolean run() {
lock.lock();
if (stopped)
return false;
started = true;
lock.unlock();
for (ConsumerRecord<K, V> record : recordsOfSamePartition) {
if (stopped)
break;
handleRecord(record);
if (latestProcessedOffset.get() < record.offset() + 1)
latestProcessedOffset.set(record.offset() + 1);
}
return future.complete(latestProcessedOffset.get());
}
public long getLatestProcessedOffset() {
return latestProcessedOffset.get();
}
private void handleRecord(ConsumerRecord<K, V> record) {
try {
Thread.sleep(ThreadLocalRandom.current().nextInt(10));
} catch (InterruptedException ignored) {
Thread.currentThread().interrupt();
}
System.out.println(Thread.currentThread().getName() + " finished message processed. Record offset = " + record.offset());
}
public void close() {
lock.lock();
this.stopped = true;
if (!started) {
future.complete(latestProcessedOffset.get());
}
lock.unlock();
}
public boolean isFinished() {
return future.isDone();
}
public long waitForCompletion(long timeout, TimeUnit timeUnit) {
try {
return future.get(timeout, timeUnit);
} catch (Exception e) {
if (e instanceof InterruptedException)
Thread.currentThread().interrupt();
return INVALID_COMMITTED_OFFSET;
}
}
}
需要说明的地方有以下几点:
latestProcessedOffset:使用这个变量保存该Worker当前已消费的最新位移。
future:使用CompletableFuture来保存Worker要提交的位移。
Worker成功操作与否的标志就是看这个future是否将latestProcessedOffset值封装到结果中。
handleRecord和单线程Consumer中的一致,模拟10ms处理消息。
构建好了ConsumerWorker类之后,下面是编写多线程Consumer的主控类,该类循环执行:
1、创建Consumer;
2、读取订阅分区的消息;
3、将消息按照不同分区进行归组分发给不同的线程;
4、暂停这些分区的后续消费,同时等待Worker线程完成消息处理;
5、提交这些分区的位移;
6、恢复这些分区的消费。
以下代码是MultiThreadedConsumer类的完整代码:
package huxihx.mtc;
import org.apache.kafka.clients.consumer.Consumer;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.clients.consumer.OffsetAndMetadata;
import org.apache.kafka.common.TopicPartition;
import org.apache.kafka.common.serialization.StringDeserializer;
import java.time.Duration;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.Properties;
import java.util.Set;
import java.util.concurrent.CompletableFuture;
import java.util.concurrent.Executor;
import java.util.concurrent.Executors;
public class MultiThreadedConsumer {
private final Map<TopicPartition, ConsumerWorker<String, String>> outstandingWorkers = new HashMap<>();
private final Map<TopicPartition, OffsetAndMetadata> offsetsToCommit = new HashMap<>();
private long lastCommitTime = System.currentTimeMillis();
private final Consumer<String, String> consumer;
private final int DEFAULT_COMMIT_INTERVAL = 3000;
private final Map<TopicPartition, Long> currentConsumedOffsets = new HashMap<>();
private final long expectedCount;
private final static Executor executor = Executors.newFixedThreadPool(
Runtime.getRuntime().availableProcessors() * 10, r -> {
Thread t = new Thread(r);
t.setDaemon(true);
return t;
});
public MultiThreadedConsumer(String brokerId, String topic, String groupID, long expectedCount) {
Properties props = new Properties();
props.setProperty(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, brokerId);
props.setProperty(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
props.setProperty(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
props.setProperty(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "false");
props.setProperty(ConsumerConfig.GROUP_ID_CONFIG, groupID);
props.setProperty(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
consumer = new KafkaConsumer<>(props);
consumer.subscribe(Collections.singletonList(topic), new MultiThreadedRebalanceListener(consumer, outstandingWorkers, offsetsToCommit));
this.expectedCount = expectedCount;
}
public void run() {
try {
while (true) {
ConsumerRecords<String, String> records = consumer.poll(Duration.ofSeconds(1));
distributeRecords(records);
checkOutstandingWorkers();
commitOffsets();
if (currentConsumedOffsets.values().stream().mapToLong(Long::longValue).sum() >= expectedCount) {
break;
}
}
} finally {
consumer.close();
}
}
/**
* 对已完成消息处理并提交位移的分区执行resume操作
*/
private void checkOutstandingWorkers() {
Set<TopicPartition> completedPartitions = new HashSet<>();
outstandingWorkers.forEach((tp, worker) -> {
if (worker.isFinished()) {
completedPartitions.add(tp);
}
long offset = worker.getLatestProcessedOffset();
currentConsumedOffsets.put(tp, offset);
if (offset > 0L) {
offsetsToCommit.put(tp, new OffsetAndMetadata(offset));
}
});
completedPartitions.forEach(outstandingWorkers::remove);
consumer.resume(completedPartitions);
}
/**
* 提交位移
*/
private void commitOffsets() {
try {
long currentTime = System.currentTimeMillis();
if (currentTime - lastCommitTime > DEFAULT_COMMIT_INTERVAL && !offsetsToCommit.isEmpty()) {
consumer.commitSync(offsetsToCommit);
offsetsToCommit.clear();
}
lastCommitTime = currentTime;
} catch (Exception e) {
e.printStackTrace();
}
}
/**
* 将不同分区的消息交由不同的线程,同时暂停该分区消息消费
* @param records
*/
private void distributeRecords(ConsumerRecords<String, String> records) {
if (records.isEmpty())
return;
Set<TopicPartition> pausedPartitions = new HashSet<>();
records.partitions().forEach(tp -> {
List<ConsumerRecord<String, String>> partitionedRecords = records.records(tp);
pausedPartitions.add(tp);
final ConsumerWorker<String, String> worker = new ConsumerWorker<>(partitionedRecords);
CompletableFuture.supplyAsync(worker::run, executor);
outstandingWorkers.put(tp, worker);
});
consumer.pause(pausedPartitions);
}
}
该类代码需要说明的地方包括:
executor:我创建了一个包含10倍CPU核数的线程数。具体线程数根据你自己的业务需求而定。如果你的事件处理逻辑是I/O密集型操作(比如写入外部系统),那么设置一个大一点的线程数通常都是有意义的。当然,我个人觉得最好不要超过Consumer分配到的总分区数。
一定要将自动提交位移的参数设置为false。多线程Consumer的一个关键设计就是要手动提交位移。
Rebalance监听器设置为MultiThreadedRebalanceListener。这个类如何响应分区的回收与分配我们稍后讨论。
run方法的逻辑基本上遵循了上面提到的流程:消息获取 -> 分发 -> 检查消费进度 -> 提交消费位移(offset)
expectedCount:这是为了后面进行性能测试比对用到的总消息消费数。
多线程Consumer在Rebalance操作开启后要小心处理。
首先,主线程的poll方法与Worker线程处理消息是并行执行的。
此时如果发生Rebalance,那么有些分区就会被分配给其他Consumer,但Worker线程依然可能正在处理这些分区。
因此,就可能出现这样的场景:两个Consumer都会处理这些分区中的消息。这就破坏了消费者组的设计理念。针对这种情况,我们必须要确保要被回收的那些分区的处理必须首先完成,之后才能被重新分配。
总体而言,在要回收分区前,多线程Consumer必须完成:
1.停止对应的Worker线程
2.提交位移
当然,一旦分区被重新分配后,事情就变得简单了,我们调用resume恢复这些分区的可消费状态即可。如果这些分区之前就是可以消费的,那么调用resume方法就没有任何效果,总之是一个“无害”操作。
MultiThreadedRebalanceListener类完整代码如下:
package huxihx.mtc;
import org.apache.kafka.clients.consumer.Consumer;
import org.apache.kafka.clients.consumer.ConsumerRebalanceListener;
import org.apache.kafka.clients.consumer.OffsetAndMetadata;
import org.apache.kafka.common.TopicPartition;
import java.util.Collection;
import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.TimeUnit;
public class MultiThreadedRebalanceListener implements ConsumerRebalanceListener {
private final Consumer<String, String> consumer;
private final Map<TopicPartition, ConsumerWorker<String, String>> outstandingWorkers;
private final Map<TopicPartition, OffsetAndMetadata> offsets;
public MultiThreadedRebalanceListener(Consumer<String, String> consumer,
Map<TopicPartition, ConsumerWorker<String, String>> outstandingWorkers,
Map<TopicPartition, OffsetAndMetadata> offsets) {
this.consumer = consumer;
this.outstandingWorkers = outstandingWorkers;
this.offsets = offsets;
}
@Override
public void onPartitionsRevoked(Collection<TopicPartition> partitions) {
Map<TopicPartition, ConsumerWorker<String, String>> stoppedWorkers = new HashMap<>();
for (TopicPartition tp : partitions) {
ConsumerWorker<String, String> worker = outstandingWorkers.remove(tp);
if (worker != null) {
worker.close();
stoppedWorkers.put(tp, worker);
}
}
stoppedWorkers.forEach((tp, worker) -> {
long offset = worker.waitForCompletion(1, TimeUnit.SECONDS);
if (offset > 0L) {
offsets.put(tp, new OffsetAndMetadata(offset));
}
});
Map<TopicPartition, OffsetAndMetadata> revokedOffsets = new HashMap<>();
partitions.forEach(tp -> {
OffsetAndMetadata offset = offsets.remove(tp);
if (offset != null) {
revokedOffsets.put(tp, offset);
}
});
try {
consumer.commitSync(revokedOffsets);
} catch (Exception e) {
e.printStackTrace();
}
}
@Override
public void onPartitionsAssigned(Collection<TopicPartition> partitions) {
consumer.resume(partitions);
}
}
该类代码需要说明的地方包括:
任何Rebalance监听器都要实现ConsumerRebalanceListener接口。
该类定义了3个字段,分别保存Consumer实例、要停掉的Worker线程实例以及要提交的位移数据。
主要的逻辑在onPartitionsRevoked方法中实现。第一步是停掉Worker线程;第二步是手动提交位移。
说完了以上4个Java类之后,现在我们编写一个测试类来比较单线程Consumer和多线程Consumer的性能对比。
首先我们创建一个topic,50个分区,单副本,并使用kafka-producer-perf-test工具创建5万条消息,每个分区1000条。
之后编写如下代码分别测试两个Consumer的消费耗时:
package huxihx.mtc;
public class Test {
public static void main(String[] args) throws InterruptedException {
int expectedCount = 50 * 900;
String brokerId = "localhost:9092";
String groupId = "test-group";
String topic = "test";
OrdinaryConsumer consumer = new OrdinaryConsumer(brokerId, topic, groupId + "-single", expectedCount);
long start = System.currentTimeMillis();
consumer.run();
System.out.println("Single-threaded consumer costs " + (System.currentTimeMillis() - start));
Thread.sleep(1L);
MultiThreadedConsumer multiThreadedConsumer =
new MultiThreadedConsumer(brokerId, topic, groupId + "-multi", expectedCount);
start = System.currentTimeMillis();
multiThreadedConsumer.run();
System.out.println("Multi-threaded consumer costs " + (System.currentTimeMillis() - start));
}
}
最后结果显示。单线程Consumer消费45000条消息共耗时232秒,而多线程Consumer耗时6.2秒,如下:
显然,采用多线程Consumer的消费性能大约是单线程Consumer的37倍。当然实际的提升效果依具体环境而定。
不过结论是肯定的,多线程Consumer在CPU核数很多且消息处理逻辑为I/O密集型操作的情形下会比单线程Consumer表现更好。