Ubuntu20运行SegNeXt代码提取道路水体(五)——使用SegNeXt跑自己的数据集结果及分析

在上一篇我们已经成功配置好了自己的数据集

但小伙伴们肯定会有疑问

搞了半天跑的是mmsegmentation里面的其他网络

我们需要跑的是SegNeXt网络呀!图文不符,退货,差评

好了好了

大家冷静

这一篇就是告诉大家我们上一篇配置好的数据集怎么拿到SegNeXt网络上来跑

首先大家先明确我们的SegNeXt网络跟我们的其他网络不在一起,其他网络都在configs/文件夹下

我们的SegNeXt在local_configs/文件夹下

里面的各个文件是啥意思 这里我就不赘述了 

不清楚的小伙伴去看看我的系列教程(四)跟着去修改相关的文件

这里需要重点提一下

1、在local_configs/segnext/base/下新建一个danet_r50-d8_512x512_80k_mydata.py

在里面的内容 为:

_base_ = [
    '../../_base_/models/danet_r50-d8.py', '../../_base_/datasets/mydata_repeat.py',
    '../../_base_/default_runtime.py', '../../_base_/schedules/schedule_80k.py'
]
model = dict(
    decode_head=dict(num_classes=2), auxiliary_head=dict(num_classes=2))
    
    
checkpoint_config = dict(by_epoch=False, interval=5000)
evaluation = dict(interval=10000, metric='mIoU')

2、修改local_configs/_base_/datasets/mydata_repeat.py

如果只是修改里面的部分内容,将路径放到我们数据集所在的位置

如下:

# dataset settings
dataset_type = 'MyRoadData'
#data_root = '/root/ADEChallengeData2016'
data_root = 'data/MyRoadData'
img_norm_cfg = dict(
    mean=[0.5947, 0.5815, 0.5625], std=[0.1173, 0.1169, 0.1157], to_rgb=True)
crop_size = (512, 512)
train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='LoadAnnotations', reduce_zero_label=True),
    dict(type='Resize', img_scale=(512,512), ratio_range=(0.5, 2.0)),
    dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
    dict(type='RandomFlip', prob=0.5),
    dict(type='PhotoMetricDistortion'),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
    dict(type='DefaultFormatBundle'),
    dict(type='Collect', keys=['img', 'gt_semantic_seg']),
]
test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(
        type='MultiScaleFlipAug',
        img_scale=(512, 512),
        # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
        flip=False,
        transforms=[
            dict(type='Resize', keep_ratio=True),
            dict(type='ResizeToMultiple', size_divisor=32),
            dict(type='RandomFlip'),
            dict(type='Normalize', **img_norm_cfg),
            dict(type='ImageToTensor', keys=['img']),
            dict(type='Collect', keys=['img']),
        ])
]
data = dict(
    samples_per_gpu=1,
    workers_per_gpu=2,
    train=dict(
        type='RepeatDataset',
        times=50,
        dataset=dict(
            type=dataset_type,
            data_root=data_root,
            img_dir='images/training',
            ann_dir='annotations/training',
            pipeline=train_pipeline)),
    val=dict(
        type=dataset_type,
        data_root=data_root,
        img_dir='images/validation',
        ann_dir='annotations/validation',
        pipeline=test_pipeline),
    test=dict(
        type=dataset_type,
        data_root=data_root,
        img_dir='images/validation',
        ann_dir='annotations/validation',
        pipeline=test_pipeline))

 跑出来道路IOU结果是0!!!

经过尝试正确的做法是

把我们在(四)里写的mydata.py文件里的内容复制过来

就可以正常运行啦

代码如下:

# dataset settings
dataset_type = 'MyRoadData'
data_root = 'data/MyRoadData'
img_norm_cfg = dict(
    mean=[0.5947, 0.5815, 0.5625], std=[0.1173, 0.1169, 0.1157], to_rgb=True)
img_scale = (512, 512)
crop_size = (256, 256)
train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='LoadAnnotations'),
    dict(type='Resize', img_scale=img_scale, ratio_range=(0.5, 2.0)),
    dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
    dict(type='RandomFlip', prob=0.5),
    dict(type='PhotoMetricDistortion'),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
    dict(type='DefaultFormatBundle'),
    dict(type='Collect', keys=['img', 'gt_semantic_seg'])
]
test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(
        type='MultiScaleFlipAug',
        img_scale=img_scale,
        # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0],
        flip=False,
        transforms=[
            dict(type='Resize', keep_ratio=True),
            dict(type='RandomFlip'),
            dict(type='Normalize', **img_norm_cfg),
            dict(type='ImageToTensor', keys=['img']),
            dict(type='Collect', keys=['img'])
        ])
]

data = dict(
    samples_per_gpu=8,
    workers_per_gpu=16,
    train=dict(
        type='RepeatDataset',
        times=40000,
        dataset=dict(
            type=dataset_type,
            data_root=data_root,
            img_dir='images/training',
            ann_dir='annotations/training',
            pipeline=train_pipeline)),
    val=dict(
        type=dataset_type,
        data_root=data_root,
        img_dir='images/validation',
        ann_dir='annotations/validation',
        pipeline=test_pipeline),
    test=dict(
        type=dataset_type,
        data_root=data_root,
        img_dir='images/validation',
        ann_dir='annotations/validation',
        pipeline=test_pipeline))

下面贴一些我的运行结果

跑了一下

iou算的是训练iou

danet网络

10000次:72.62

2023-11-07 19:22:36,886 - mmseg - INFO - 
+------------+-------+-------+
|   Class    |  IoU  |  Acc  |
+------------+-------+-------+
| background | 94.34 | 97.58 |
|    road    | 72.62 | 81.91 |
+------------+-------+-------+
2023-11-07 19:22:36,886 - mmseg - INFO - Summary:
2023-11-07 19:22:36,886 - mmseg - INFO - 
+-------+-------+-------+
|  aAcc |  mIoU |  mAcc |
+-------+-------+-------+
| 95.08 | 83.48 | 89.74 |
+-------+-------+-------+

70000:75.21

+------------+-------+-------+
|   Class    |  IoU  |  Acc  |
+------------+-------+-------+
| background | 94.68 | 96.99 |
|    road    | 75.21 | 87.17 |
+------------+-------+-------+
2023-11-08 02:45:12,389 - mmseg - INFO - Summary:
2023-11-08 02:45:12,389 - mmseg - INFO - 
+-------+-------+-------+
|  aAcc |  mIoU |  mAcc |
+-------+-------+-------+
| 95.42 | 84.95 | 92.08 |
+-------+-------+-------+

260000: 80.81

2023-11-09 02:07:34,806 - mmseg - INFO - 
+------------+-------+-------+
|   Class    |  IoU  |  Acc  |
+------------+-------+-------+
| background | 96.09 | 98.16 |
|    road    | 80.81 | 88.66 |
+------------+-------+-------+
2023-11-09 02:07:34,806 - mmseg - INFO - Summary:
2023-11-09 02:07:34,806 - mmseg - INFO - 
+-------+-------+-------+
|  aAcc |  mIoU |  mAcc |
+-------+-------+-------+
| 96.64 | 88.45 | 93.41 |
+-------+-------+-------+

320000:82.37

2023-11-09 09:25:21,676 - mmseg - INFO - 
+------------+-------+-------+
|   Class    |  IoU  |  Acc  |
+------------+-------+-------+
| background | 96.52 | 98.75 |
|    road    | 82.37 | 87.81 |
+------------+-------+-------+
2023-11-09 09:25:21,676 - mmseg - INFO - Summary:
2023-11-09 09:25:21,677 - mmseg - INFO - 
+------+-------+-------+
| aAcc |  mIoU |  mAcc |
+------+-------+-------+
| 97.0 | 89.44 | 93.28 |
+------+-------+-------+

SegNeXt网络

20000次:

 road    | 74.51

120000次:

 road    | 81.83

240000次:

 road    | 85.5

400000次:

 road    | 88.08

你可能感兴趣的:(深度学习,Linux,深度学习,python,道路)