MySQL数据库之常用分库分表方案实例分析

MySQL数据库之常用分库分表方案实例分析_第1张图片

一、数据库瓶颈

不管是IO瓶颈,还是CPU瓶颈,最终都会导致数据库的活跃连接数增加,进而逼近甚至达到数据库可承载活跃连接数的阈值。在业务Service来看就是,可用数据库连接少甚至无连接可用。接下来就可以想象了吧(并发量、吞吐量、崩溃)。

1、IO瓶颈

第一种:磁盘读IO瓶颈,热点数据太多,数据库缓存放不下,每次查询时会产生大量的IO,降低查询速度 -> 分库和垂直分表。

第二种:网络IO瓶颈,请求的数据太多,网络带宽不够 -> 分库。

2、CPU瓶颈

第一种:SQL问题,如SQL中包含join,group by,order by,非索引字段条件查询等,增加CPU运算的操作 -> SQL优化,建立合适的索引,在业务Service层进行业务计算。

第二种:单表数据量太大,查询时扫描的行太多,SQL效率低,CPU率先出现瓶颈 -> 水平分表。

二、分库分表

1、水平分库

MySQL数据库之常用分库分表方案实例分析_第2张图片

1、概念:以字段为依据,按照一定策略(hash、range等),将一个库中的数据拆分到多个库中。

2、结果:

每个库的结构都一样;

每个库的数据都不一样,没有交集;

所有库的并集是全量数据;

3、场景:系统绝对并发量上来了,分表难以根本上解决问题,并且还没有明显的业务归属来垂直分库。

4、分析:库多了,io和cpu的压力自然可以成倍缓解。

2、水平分表

你可能感兴趣的:(java,后端,面试,数据库,mysql)