【LeetCode】89. Gray Code (2 solutions)

Gray Code

The gray code is a binary numeral system where two successive values differ in only one bit.

Given a non-negative integer n representing the total number of bits in the code, print the sequence of gray code. A gray code sequence must begin with 0.

For example, given n = 2, return [0,1,3,2]. Its gray code sequence is:

00 - 0
01 - 1
11 - 3
10 - 2

Note:
For a given n, a gray code sequence is not uniquely defined.

For example, [0,2,3,1] is also a valid gray code sequence according to the above definition.

For now, the judge is able to judge based on one instance of gray code sequence. Sorry about that.

 

解法一:

列出前几个格雷码观察规律:

n=3

0 0 0 

0 0 1

0 1 1

0 1 0

1 1 0

1 1 1

1 0 1

1 0 0

可以发现,最右边第0位是以0110循环,第1位是以00111100循环……

由此可知,第j位在[2j, 2j+2j+1)是1,其余为0进行循环。每个循环段包含的格雷码总数为2j+2

因此对于第i个格雷码的第j位,需要根据i判断落在第j循环段的0位还是1位。

将i从左往右扫一遍,确定0/1后左移,即可。

class Solution {
public:
    vector<int> grayCode(int n) {
        vector<int> result;
        for(int i = 0; i < pow(2.0,n); i ++)
        {//2^n numbers
            int value = 0;
            for(int j = n-1; j >= 0; j --)
            {//jth digit from right to left
                int divisor = pow(2.0, j+2);
                int r = i%divisor;
                if(r >= pow(2.0, j) && r < pow(2.0, j)+pow(2.0, j+1))
                    value += 1;
                if(j == 0)
                    break;
                value <<= 1;
            }
            result.push_back(value);
        }
        return result;
    }
};

 

解法二:

n=0时,result={0}

n=1时,result={0,1}。1可以看做对0的第1位置1后再次加入。

n=2时,result={00,01,11,10}。11可以看做对01的第2位置1,10可以看做对00的第2位置1后再次加入。

……

即对result已有的中间结果,逆序处理,对每个成员的相应位置1。

class Solution {
public:
    vector<int> grayCode(int n) {
        vector<int> ret(1, 0);
        for(int i = 0; i < n; i ++)
        {
            int size = ret.size();
            for(int j = size-1; j >= 0; j --)
            {
                int num = ret[j];
                num += 1<<i;
                ret.push_back(num);
            }
        }
        return ret;
    }
};

你可能感兴趣的:(LeetCode)