通常说的消息队列,简称MQ(Message Queue)
,指的就是消息中间件。简单理解为一个使用队列来通信的组件,本质上就是个转发器,包含发消息,存消息,消费消息的过程。
1、解耦
订单系统下单后,消息写入消息队列,库存系统订阅下单系统,获取下单信息,进行库存操作
2、异步
注册信息保存后,同时异步发短信和邮件
3、削峰
流量暴涨,用户请求写入消息队列,系统读取消息队列慢慢处理
4、消息通讯
消息队列内置了高效的通信机制,可用于消息通讯。如实现点对点消息队列、聊天室等。
5、远程调用
基于MQ,自研了远程调用框架。
消息队列有两种模型:队列模型和发布/订阅模型。
生产者往某个队列里面发送消息,一个队列可以存储多个生产者的消息,一个队列也可以有多个消费者, 但是消费者之间是竞争关系,即每条消息只能被一个消费者消费。
为了解决一条消息能被多个消费者消费的问题,发布/订阅模型就来了。该模型是将消息发往一个Topic
(主题)中,所有订阅了这个 Topic
的订阅者都能消费这条消息。
其实可以这么理解,发布/订阅模型等于我们都加入了一个群聊中,我发一条消息,加入了这个群聊的人都能收到这条消息。那么队列模型就是一对一聊天,我发给你的消息,只能在你的聊天窗口弹出,是不可能弹出到别人的聊天窗口中的。讲到这有人说,那我一对一聊天对每个人都发同样的消息不就也实现了一条消息被多个人消费了嘛。
是的,通过多队列全量存储相同的消息,即数据的冗余可以实现一条消息被多个消费者消费。RabbitMQ
就是采用队列模型,通过 Exchange
模块来将消息发送至多个队列,解决一条消息需要被多个消费者消费问题。
这里还能看到假设群聊里除我之外只有一个人,那么此时的发布/订阅模型和队列模型其实就一样了。
一般我们称发送消息方为生产者 Producer
,接受消费消息方为消费者Consumer
,消息队列服务端为Broker
。
消息从Producer
发往Broker
,Broker
将消息存储至本地,然后Consumer
从Broker
拉取消息,或者Broker
推送消息至Consumer
,最后消费。
为了提高并发度,往往发布/订阅模型还会引入队列或者分区的概念。即消息是发往一个主题下的某个队列或者某个分区中。RocketMQ
中叫队列,Kafka
叫分区,本质一样。
例如某个主题下有 5 个队列,那么这个主题的并发度就提高为 5 ,同时可以有 5 个消费者并行消费该主题的消息。一般可以采用轮询或者 key hash
取余等策略来将同一个主题的消息分配到不同的队列中。
与之对应的消费者一般都有组的概念 Consumer Group
, 即消费者都是属于某个消费组的。一条消息会发往多个订阅了这个主题的消费组。
假设现在有两个消费组分别是Group 1
和 Group 2
,它们都订阅了Topic-a
。此时有一条消息发往Topic-a
,那么这两个消费组都能接收到这条消息。然后这条消息实际是写入Topic
某个队列中,消费组中的某个消费者对应消费一个队列的消息。
在物理上除了副本拷贝之外,一条消息在Broker
中只会有一份,每个消费组会有自己的offset
即消费点位来标识消费到的位置。在消费点位之前的消息表明已经消费过了。当然这个offset
是队列级别的。每个消费组都会维护订阅的Topic
下的每个队列的offset
。
问题点
一条消息从生产到消费的过程,可以划分为三个阶段,消息生产阶段,消息存储阶段,消息消费阶段。
消息生产阶段: 从消息被生产出来,然后提交给 MQ 的过程中,只要能正常收到 MQ 存储的 ack 确认响应,就表示发送成功,所以只要处理好返回值和异常,这个阶段是不会出现消息丢失的。
消息存储阶段: 这个阶段一般会直接交给 MQ 消息中间件来保证,但是你要了解它的原理,比如 Broker 会做副本,保证一条消息至少同步两个节点再返回 ack
消息消费阶段: 消费端从 Broker 上拉取消息,只要消费端在收到消息后,不立即发送消费确认给 Broker,而是等到执行完业务逻辑后,再发送消费确认,也能保证消息的不丢失。
方案看似万无一失,每个阶段都能保证消息的不丢失,但在分布式系统中,故障不可避免,作为消费生产端,你并不能保证 MQ 是不是弄丢了你的消息,消费者是否消费了你的消息,所以,本着 Design for Failure 的设计原则,你还是需要一种机制,来 Check 消息是否丢失了。
总体方案解决思路为:在消息生产端,给每个发出的消息都指定一个全局唯一 ID,或者附加一个连续递增的版本号,然后在消费端做对应的版本校验。
具体怎么落地实现呢?你可以利用拦截器机制。 在生产端发送消息之前,通过拦截器将消息版本号注入消息中(版本号可以采用连续递增的 ID 生成,也可以通过分布式全局唯一 ID生成)。然后在消费端收到消息后,再通过拦截器检测版本号的连续性或消费状态,这样实现的好处是消息检测的代码不会侵入到业务代码中,可以通过单独的任务来定位丢失的消息,做进一步的排查。
这里需要你注意:如果同时存在多个消息生产端和消息消费端,通过版本号递增的方式就很难实现了,因为不能保证版本号的唯一性,此时只能通过全局唯一 ID 的方案来进行消息检测,具体的实现原理和版本号递增的方式一致。
在消息消费的过程中,如果出现失败的情况,通过补偿的机制发送方会执行重试,重试的过程就有可能产生重复的消息,那么如何解决这个问题?
这个问题其实可以换一种说法,就是如何解决消费端幂等性问题(幂等性,就是一条命令,任意多次执行所产生的影响均与一次执行的影响相同),只要消费端具备了幂等性,那么重复消费消息的问题也就解决了。
最简单的实现方案,就是在数据库中建一张消息日志表, 这个表有两个字段:消息 ID 和消息执行状态。这样,我们消费消息的逻辑可以变为:在消息日志表中增加一条消息记录,然后再根据消息记录,异步操作。
因为我们每次都会在插入之前检查是否消息已存在,所以就不会出现一条消息被执行多次的情况,这样就实现了一个幂等的操作。当然,基于这个思路,不仅可以使用关系型数据库,也可以通过 Redis 来代替数据库实现唯一约束的方案。
如果出现积压,那一定是性能问题,想要解决消息从生产到消费上的性能问题,就首先要知道哪些环节可能出现消息积压,然后在考虑如何解决。
因为消息发送之后才会出现积压的问题,所以和消息生产端没有关系,又因为绝大部分的消息队列单节点都能达到每秒钟几万的处理能力,相对于业务逻辑来说,性能不会出现在中间件的消息存储上面。毫无疑问,出问题的肯定是消息消费阶段,那么从消费端入手,如何回答呢?
如果是线上突发问题,要临时扩容,增加消费端的数量,与此同时,降级一些非核心的业务。通过扩容和降级承担流量,这是为了表明你对应急问题的处理能力。
其次,才是排查解决异常问题,如通过监控,日志等手段分析是否消费端的业务逻辑代码出现了问题,优化消费端的业务处理逻辑。
最后,如果是消费端的处理能力不足,可以通过水平扩容来提供消费端的并发处理能力,但这里有一个考点需要特别注意, 那就是在扩容消费者的实例数的同时,必须同步扩容主题 Topic 的分区数量,确保消费者的实例数和分区数相等。如果消费者的实例数超过了分区数,由于分区是单线程消费,所以这样的扩容就没有效果。
消息队列漫谈:什么是消息模型?
消息队列面试连环问:如何保证消息不丢失?处理重复消息?消息有序性?消息堆积处理?
冒着期末挂科的风险也要给你看的消息队列和RocketMQ入门总结