高性能主线,包括线程模型、数据结构、持久化、网络框架;
高可靠主线,包括主从复制、哨兵机制;
Redis底层数据结构
动态字符串、双向链表、压缩列表、哈希表、跳表和整数数组
为什么哈希表操作变慢了?
当你往 Redis 中写入大量数据后,就可能发现操作有时候会突然变慢了。这其实是因为你忽略了一个潜在的风险点,那就是哈希表的冲突问题和 rehash 可能带来的操作阻塞。
Redis 解决哈希冲突的方式,就是链式哈希。链式哈希也很容易理解,就是指同一个哈希桶中的多个元素用一个链表来保存,它们之间依次用指针连接。
但是,这里依然存在一个问题,哈希冲突链上的元素只能通过指针逐一查找再操作。如果哈希表里写入的数据越来越多,哈希冲突可能也会越来越多,这就会导致某些哈希冲突链过长,进而导致这个链上的元素查找耗时长,效率降低
Redis 会对哈希表做 rehash 操作。rehash 也就是增加现有的哈希桶数量,让逐渐增多的 entry 元素能在更多的桶之间分散保存,减少单个桶中的元素数量,从而减少单个桶中的冲突。那具体怎么做呢?
其实,为了使 rehash 操作更高效,Redis 默认使用了两个全局哈希表:哈希表 1 和哈希表 2。一开始,当你刚插入数据时,默认使用哈希表 1,此时的哈希表 2 并没有被分配空间。随着数据逐步增多,Redis 开始执行 rehash,这个过程分为三步
1给哈希表 2 分配更大的空间,例如是当前哈希表 1 大小的两倍;
把哈希表 1 中的数据重新映射并拷贝到哈希表 2 中;
释放哈希表 1 的空间
这个过程看似简单,但是第二步涉及大量的数据拷贝,如果一次性把哈希表 1 中的数据都迁移完,会造成 Redis 线程阻塞,无法服务其他请求。此时,Redis 就无法快速访问数据了。
为了避免这个问题,Redis 采用了渐进式 rehash。
整数数组和双向链表也很常见,它们的操作特征都是顺序读写,也就是通过数组下标或者链表的指针逐个元素访问,操作复杂度基本是 O(N),操作效率比较低;压缩列表和跳表我们平时接触得可能不多,但它们也是 Redis 重要的数据结构,所以我来重点解释一下。
压缩列表实际上类似于一个数组,数组中的每一个元素都对应保存一个数据。和数组不同的是,压缩列表在表头有三个字段 zlbytes、zltail 和 zllen,分别表示列表长度、列表尾的偏移量和列表中的 entry 个数;压缩列表在表尾还有一个 zlend,表示列表结束。
在压缩列表中,如果我们要查找定位第一个元素和最后一个元素,可以通过表头三个字段的长度直接定位,复杂度是 O(1)。而查找其他元素时,就没有这么高效了,只能逐个查找,此时的复杂度就是 O(N) 了。
有序链表只能逐一查找元素,导致操作起来非常缓慢,于是就出现了跳表。具体来说,跳表在链表的基础上,增加了多级索引,通过索引位置的几个跳转,实现数据的快速定位,如下图所示:
为了提高查找速度,我们来增加一级索引:从第一个元素开始,每两个元素选一个出来作为索引。这些索引再通过指针指向原始的链表。例如,从前两个元素中抽取元素 1 作为一级索引,从第三、四个元素中抽取元素 11 作为一级索引。此时,我们只需要 4 次查找就能定位到元素 33 了。
可以看到,这个查找过程就是在多级索引上跳来跳去,最后定位到元素。这也正好符合“跳”表的叫法。当数据量很大时,跳表的查找复杂度就是 O(logN)
Redis 是单线程,主要是指 **Redis 的网络 IO 和键值对读写是由一个线程来完成的,这也是 Redis 对外提供键值存储服务的主要流程。**但 Redis 的其他功能,比如持久化、异步删除、集群数据同步等,其实是由额外的线程执行的。
1、Redis 的大部分操作在内存上完成
2、再加上它采用了高效的数据结构,例如哈希表和跳表,这是它实现高性能的一个重要原因
3、就是 Redis 采用了多路复用机制,使其在网络 IO 操作中能并发处理大量的客户端请求,实现高吞吐率![请添加图片描述](https://img-blog.csdnimg.cn/abb40af894e84dab95ac766442a50d11.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBASVQtLUZseQ==,size_20,color_FFFFFF,t_70,g_se,x_16)
在这里的网络 IO 操作中,有潜在的阻塞点,分别是 accept() 和 recv()。当 Redis 监听到一个客户端有连接请求,但一直未能成功建立起连接时,会阻塞在 accept() 函数这里,导致其他客户端无法和 Redis 建立连接。类似的,当 Redis 通过 recv() 从一个客户端读取数据时,如果数据一直没有到达,Redis 也会一直阻塞在 recv()。
基于多路复用的高性能 I/O 模型
Linux 中的 IO 多路复用机制是指一个线程处理多个 IO 流,就是我们经常听到的 select/epoll 机制。简单来说,在 Redis 只运行单线程的情况下,该机制允许内核中,同时存在多个监听套接字和已连接套接字。内核会一直监听这些套接字上的连接请求或数据请求。一旦有请求到达,就会交给 Redis 线程处理,这就实现了一个 Redis 线程处理多个 IO 流的效果。
AOF 日志是如何实现的?
AOF 日志正好相反,它是写后日志,“写后”的意思是 Redis 是先执行命令,把数据写入内存,然后才记录日志,如下图所示
传统数据库的日志,例如 redo log(重做日志),记录的是修改后的数据,而 AOF 里记录的是 Redis 收到的每一条命令,这些命令是以文本形式保存的。
但是,为了避免额外的检查开销,Redis 在向 AOF 里面记录日志的时候,并不会先去对这些命令进行语法检查。所以,如果先记日志再执行命令的话,日志中就有可能记录了错误的命令,Redis 在使用日志恢复数据时,就可能会出错。
AOF 还有一个好处:它是在命令执行后才记录日志,所以不会阻塞当前的写操作。
AOF 也有两个潜在的风险
1、如果刚执行完一个命令,还没有来得及记日志就宕机了,那么这个命令和相应的数据就有丢失的风险。如果此时 Redis 是用作缓存,还可以从后端数据库重新读入数据进行恢复,但是,如果 Redis 是直接用作数据库的话,此时,因为命令没有记入日志,所以就无法用日志进行恢复了。
2、AOF 虽然避免了对当前命令的阻塞,但可能会给下一个操作带来阻塞风险。这是因为,AOF 日志也是在主线程中执行的,如果在把日志文件写入磁盘时,磁盘写压力大,就会导致写盘很慢,进而导致后续的操作也无法执行了。
三种写回策略
Always,同步写回:每个写命令执行完,立马同步地将日志写回磁盘;
Everysec,每秒写回:每个写命令执行完,只是先把日志写到 AOF 文件的内存缓冲区,
每隔一秒把缓冲区中的内容写入磁盘;
No,操作系统控制的写回:每个写命令执行完,只是先把日志写到 AOF 文件的内存缓冲区,
由操作系统决定何时将缓冲区内容写回磁盘。
OF 是以文件的形式在记录接收到的所有写命令。随着接收的写命令越来越多,AOF 文件会越来越大。这也就意味着,我们一定要小心 AOF 文件过大带来的性能问题。
这里的“性能问题”,主要在于以下三个方面:一是,文件系统本身对文件大小有限制,无法保存过大的文件;二是,如果文件太大,之后再往里面追加命令记录的话,效率也会变低;三是,如果发生宕机,AOF 中记录的命令要一个个被重新执行,用于故障恢复,如果日志文件太大,整个恢复过程就会非常缓慢,这就会影响到 Redis 的正常使用。
日志文件太大了怎么办?
为什么重写机制可以把日志文件变小呢? 实际上,重写机制具有“多变一”功能。所谓的“多变一”,也就是说,旧日志文件中的多条命令,在重写后的新日志中变成了一条命令。
我们知道,AOF 文件是以追加的方式,逐一记录接收到的写命令的。当一个键值对被多条写命令反复修改时,AOF 文件会记录相应的多条命令。但是,在重写的时候,是根据这个键值对当前的最新状态,为它生成对应的写入命令。这样一来,一个键值对在重写日志中只用一条命令就行了,而且,在日志恢复时,只用执行这条命令,就可以直接完成这个键值对的写入了。
AOF 重写会阻塞吗?
和 AOF 日志由主线程写回不同,重写过程是由后台子进程 bgrewriteaof 来完成的,这也是为了避免阻塞主线程,导致数据库性能下降。
我把重写的过程总结为“一个拷贝,两处日志”。“一个拷贝”就是指,每次执行重写时,主线程 fork 出后台的 bgrewriteaof 子进程。此时,fork 会把主线程的内存拷贝一份给 bgrewriteaof 子进程,这里面就包含了数据库的最新数据。然后,bgrewriteaof 子进程就可以在不影响主线程的情况下,逐一把拷贝的数据写成操作,记入重写日志。
但是,也正因为记录的是操作命令,而不是实际的数据,所以,用 AOF 方法进行故障恢复的时候,需要逐一把操作日志都执行一遍。如果操作日志非常多,Redis 就会恢复得很缓慢,影响到正常使用。这当然不是理想的结果。那么,还有没有既可以保证可靠性,还能在宕机时实现快速恢复的其他方法呢?
内存快照。所谓内存快照,就是指内存中的数据在某一个时刻的状态记录。
给哪些内存数据做快照?
Redis 的数据都在内存中,为了提供所有数据的可靠性保证,它执行的是全量快照,也就是说,把内存中的所有数据都记录到磁盘中,这就类似于给 100 个人拍合影,把每一个人都拍进照片里。这样做的好处是,一次性记录了所有数据,一个都不少。
Redis 提供了两个命令来生成 RDB 文件,分别是 save 和 bgsave。
save:在主线程中执行,会导致阻塞;
bgsave:创建一个子进程,专门用于写入 RDB 文件,避免了主线程的阻塞,这也是 Redis RDB 文件生成的默认配置。
所以这个时候,Redis 就会借助操作系统提供的写时复制技术(Copy-On-Write, COW),在执行快照的同时,正常处理写操作。
简单来说,bgsave 子进程是由主线程 fork 生成的,可以共享主线程的所有内存数据。bgsave 子进程运行后,开始读取主线程的内存数据,并把它们写入 RDB 文件。
bgsave 执行时不阻塞主线程,但是**,如果频繁地执行全量快照,也会带来两方面的开销。**
一方面,频繁将全量数据写入磁盘,会给磁盘带来很大压力,多个快照竞争有限的磁盘带宽,前一个快照还没有做完,后一个又开始做了,容易造成恶性循环。
另一方面,bgsave 子进程需要通过 fork 操作从主线程创建出来。虽然,子进程在创建后不会再阻塞主线程,但是,fork 这个创建过程本身会阻塞主线程,而且主线程的内存越大,阻塞时间越长。如果频繁 fork 出 bgsave 子进程,这就会频繁阻塞主线程了(所以,在 Redis 中如果有一个 bgsave 在运行,就不会再启动第二个 bgsave 子进程)。那么,有什么其他好方法吗?
一个混合使用 AOF 日志和内存快照的方法。简单来说,内存快照以一定的频率执行,在两次快照之间,使用 AOF 日志记录这期间的所有命令操作