各位CSDN的uu们你们好呀,今天,小雅兰的内容是C++中的模板初阶的内容,下面,让我们进入C++模板的世界吧!!!
1. 泛型编程
2. 函数模板
3. 类模板
如何实现一个通用的交换函数呢?
void Swap(int& left, int& right) { int temp = left; left = right; right = temp; } void Swap(double& left, double& right) { double temp = left; left = right; right = temp; } void Swap(char& left, char& right) { char temp = left; left = right; right = temp; } ......
这些函数只有类型不一样,其余的都是一样的!!
使用函数重载虽然可以实现,但是有一下几个不好的地方:
- 重载的函数仅仅是类型不同,代码复用率比较低,只要有新类型出现时,就需要用户自己增加对应的函数
- 代码的可维护性比较低,一个出错可能所有的重载均出错
那能否告诉编译器一个模子,让编译器根据不同的类型利用该模子来生成代码呢?
如果在C++中,也能够存在这样一个模具,通过给这个模具中填充不同材料(类型),来获得不同材料的铸件(即生成具体类型的代码),那将会节省许多头发。巧的是前人早已将树栽好,我们只需在此乘凉。
泛型编程:编写与类型无关的通用代码,是代码复用的一种手段。模板是泛型编程的基础。
函数模板代表了一个函数家族,该函数模板与类型无关,在使用时被参数化,根据实参类型产生函数的特定类型版本。
template
返回值类型 函数名(参数列表){}
template
void Swap( T& left, T& right)
{
T temp = left;
left = right;
right = temp;
}
注意:typename是用来定义模板参数关键字,也可以使用class(切记:不能使用struct代替class)
template
void Swap(T& left, T& right) { T temp = left; left = right; right = temp; } int main() { int a = 0; int b = 1; double c = 1.1; double d = 2.2; //调用的不是同一个函数 Swap(a, b); Swap(c, d); return 0; } 可是我们只写了一个函数模板呀,并没有写函数,那这究竟是怎么回事呢?
下面,我们来看看函数模板的原理!
那么如何解决上面的问题呢?大家都知道,瓦特改良蒸汽机,人类开始了工业革命,解放了生产力。机器生 产淘汰掉了很多手工产品。本质是什么,重复的工作交给了机器去完成。有人给出了论调:懒人创造世界。
函数模板是一个蓝图,它本身并不是函数,是编译器用使用方式产生特定具体类型函数的模具。所以其实模 板就是将本来应该我们做的重复的事情交给了编译器。
模板的实例化!!!
在编译器编译阶段,对于模板函数的使用,编译器需要根据传入的实参类型来推演生成对应类型的函数以供调用。比如:当用double类型使用函数模板时,编译器通过对实参类型的推演,将T确定为double类型,然 后产生一份专门处理double类型的代码,对于字符类型也是如此。
用不同类型的参数使用函数模板时,称为函数模板的实例化。模板参数实例化分为:隐式实例化和显式实例化。
隐式实例化:让编译器根据实参推演模板参数的实际类型
template
T Add(const T& left, const T& right)
{
return left + right;
}int main()
{
int a1 = 10, a2 = 20;
double d1 = 10.0, d2 = 20.0;
Add(a1, a2);
Add(d1, d2);
/*
该语句不能通过编译,因为在编译期间,当编译器看到该实例化时,需要推演其实参类型
通过实参a1将T推演为int,通过实参d1将T推演为double类型,但模板参数列表中只有一个T,
编译器无法确定此处到底该将T确定为int 或者 double类型而报错
注意:在模板中,编译器一般不会进行类型转换操作,因为一旦转化出问题,编译器就需要背黑锅
Add(a1, d1);
*/
// 此时有两种处理方式:1. 用户自己来强制转化 2. 使用显式实例化
//Add(a, (int)d);
return 0;
}
模板参数语法 很类似函数参数
函数参数定义的是形参对象
模板参数定义的是类型
template
void func(const X& x, const Y& y)
{
cout << x << endl;
cout << y << endl;
}
int main()
{
func(1, 2);
func(1.1, 2.2);
func(1.1, 2);
return 0;
}
显式实例化:在函数名后的<>中指定模板参数的实际类型
int main(void)
{
int a = 10;
double b = 20.0;
// 显式实例化
Addint>(a, b);
return 0;
}
如果类型不匹配,编译器会尝试进行隐式类型转换,如果无法转换成功编译器将会报错。
// 通用加法函数
template
T Add(T left, T right)
{
return left + right;
}template
T* f(int n)
{
T* p = new T[n];
return p;
}int main()
{
// 推演实例化
// 函数参数传递,推出模板参数的类型,生成对应的函数
//func(1, 2);
//func(1.1, 2.2);
//func(1.1, 2);cout << Add(1, (int)2.2) << endl;
// 显式实例化
cout << Add(1, 2.2) << endl;
cout << Add(1, 2.2) << endl; // 只能显示实例化调用
double* p = f(10); return 0;
}
// 专门处理int的加法函数
int Add(int left, int right)
{
return left + right;
}
// 通用加法函数
template
T Add(T left, T right)
{
return left + right;
}
void Test()
{
Add(1, 2); // 与非模板函数匹配,编译器不需要特化
Add(1, 2); // 调用编译器特化的Add版本
}
// 专门处理int的加法函数
int Add(int left, int right)
{
return left + right;
}
// 通用加法函数
template
T1 Add(T1 left, T2 right)
{
return left + right;
}
void Test()
{
Add(1, 2); // 与非函数模板类型完全匹配,不需要函数模板实例化
Add(1, 2.0); // 模板函数可以生成更加匹配的版本,编译器根据实参生成更加匹配的Add函数
}
template
class 类模板名
{
// 类内成员定义
};
// 类模板
template
class Stack
{
public:
Stack(int capacity = 4)
{
cout << "Stack(int capacity = 4)" << endl;
_a = new T[capacity];
_top = 0;
_capacity = capacity;
}
~Stack()
{
cout << "~Stack()" << endl;
delete[] _a;
_a = nullptr;
_top = 0;
_capacity = 0;
}
private:
T* _a;
int _top;
int _capacity;
};
int main()
{
// 显示实例化
Stack st1; // int
Stack st2; // double
//vector v1;
//vector v2;
//list lt;
//stack st;
return 0;
}
// 动态顺序表
// 注意:Vector不是具体的类,是编译器根据被实例化的类型生成具体类的模具
template
class Vector
{
public:
Vector(size_t capacity = 10)
: _pData(new T[capacity])
, _size(0)
, _capacity(capacity)
{}
// 使用析构函数演示:在类中声明,在类外定义。
~Vector();
void PushBack(const T& data);
void PopBack();
size_t Size()
{
return _size;
}
T& operator[](size_t pos)
{
assert(pos < _size);
return _pData[pos];
}
private:
T* _pData;
size_t _size;
size_t _capacity;
};
// 注意:类模板中函数放在类外进行定义时,需要加模板参数列表
template
Vector::~Vector()
{
if (_pData)
delete[] _pData;
_size = _capacity = 0;
}
类模板实例化与函数模板实例化不同,类模板实例化需要在类模板名字后跟<>,然后将实例化的类型放在<>中即可,类模板名字不是真正的类,而实例化的结果才是真正的类。
// Vector类名,Vector才是类型
Vector< int> s1;
Vector
s2;