车辆分配算法实现

from math import inf, sqrt
from copy import deepcopy
import pandas as pd
import numpy as np
from sklearn.cluster import KMeans, DBSCAN
import matplotlib.pyplot as plt
from sqlalchemy import create_engine
from pyecharts.charts import Geo
from pyecharts import options as opts
from pyecharts.globals import GeoType
import pickle
import random
from collections import defaultdict
import json


class Router(object):
    '''
    distribute_method
    分配车的方式
    有两种分配货车的方法分别是 'min_trucks_num', 'full_trucks'
    min_trucks_num 表示局部使用最少辆的车
    full_trucks 表示使得车装得尽可能满,可能会用更多的车
    '''
    def __init__(self, distribute_method):
        self.distribute_method = distribute_method
        '''
        初始化无向图以及对应的数据
        '''
        self.init_data = {
            0: [2, 3, 4, 6, 1, 11],
            1: [0, 8, 9],
            2: [3, 0, 11, 12, 15],
            3: [4, 0, 2, 16],
            4: [3, 0, 6],
            5: [7, 8, 6],
            6: [5, 4, 0],
            7: [5],
            8: [5, 1],
            9: [1, 10],
            10: [9, 11, 12, 13],
            11: [0, 2, 12, 10],
            12: [2, 11, 10, 13],
            13: [10, 12, 14],
            14: [13, 15],
            15: [2, 14],
            16: [3],
        }
        self.map_dict = {}
        self.check_dict = {}
        self.m_list = ['郑州', '开封', '平顶山', '洛阳', '焦作',
                       '鹤壁', '新乡', '安阳', '濮阳', '商丘', '周口',
                       '许昌', '漯河', '驻马店', '信阳', '南阳', '三门峡']
        self.content = '''河南省,郑州,113.65,34.76
河南省,开封,114.35,34.79
河南省,平顶山,113.29,33.75
河南省,洛阳,112.44,34.7
河南省,焦作,113.21,35.24
河南省,鹤壁,114.17,35.9
河南省,新乡,113.85,35.31
河南省,安阳,114.35,36.1
河南省,濮阳,114.98,35.71
河南省,商丘,115.65,34.44
河南省,周口,114.63,33.63
河南省,许昌,113.81,34.02
河南省,漯河,114.02,33.56
河南省,驻马店,114.02,32.98
河南省,信阳,114.08,32.13
河南省,南阳,112.53,33.01
河南省,三门峡,111.19,34.76
'''

    def _initialize(self):
        '''ip
        初始化需要计算最短路径的数据
        '''
        for line in self.content.split('\n'):
            if line:
                _, city, x_1, x_2 = line.split(',')
                index = self.m_list.index(city)
                self.map_dict[index] = (float(x_1), float(x_2))

        # 计算欧式距离
        distance = lambda x1, x2, y1, y2: sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)
        # 初始化邻接表 <- 对应的位置为顶点之间的权重
        for key, value in self.init_data.items():
            self.check_dict[key] = list()
            for v in value:
                d = distance(self.map_dict[key][0], self.map_dict[v][0],
                             self.map_dict[key][1], self.map_dict[v][1])
                self.check_dict[key].append(d)

    def path(self, graph, _class, start_=0, end_=12, save=False, save_name='path.txt'):
        '''寻找两点之间的最短路径
        graph 给定一个无向图
        start_:起始点
        end_:终点
        '''
        visited = {i: False for i in range(len(self.m_list))}
        self.min_sum = inf
        self.seq_path = list()
        self.real_path = list()

        def dfs(from_, to_, edg_weight_sum):
            '''深度优先遍历无向图
            如果下一个点是终点 return
            如果下一个结点是已经遍历过的点 continue
            如果加上下一个点的边权重和大于当前最小边权重和 continue
            '''
            # 剪枝
            # global min_sum, real_path
            if to_ == end_:
                if self.min_sum > edg_weight_sum:
                    self.min_sum = edg_weight_sum
                    # print(self.seq_path, self.min_sum)
                    self.real_path = deepcopy(self.seq_path)
                return

            if all(visited.values()):
                return

            for inner_index, _node in enumerate(graph[to_]):
                if not visited.get(_node):
                    visited[_node] = True
                    self.seq_path.append(_node)
                    w = self.check_dict[to_][inner_index]
                    dfs(to_, _node, w + edg_weight_sum)
                    visited[_node] = False
                    self.seq_path.remove(_node)

        first_loop = graph[start_]
        visited[start_] = True
        self.seq_path.append(start_)

        for _index, node in enumerate(first_loop):
            visited[node] = True
            self.seq_path.append(node)
            weight = self.check_dict[start_][_index]
            dfs(start_, node, weight)  # node 是要去的结点 (0, 7, w)
            visited[node] = False
            self.seq_path.remove(node)

        if save:
            with open(save_name, 'w', encoding='utf-8') as ff:
                for k, city_index in enumerate(self.real_path):
                    c = self.m_list[city_index]
                    ff.write(c + ',') if k != len(self.real_path) - 1 else ff.write(c)

    def orginal_cluster(self, show_figure_matplotlib=False,
                        show_figure_echarts=False, test=True) -> dict:
        '''查看原始数据的聚类效果
        其表明,聚类可以大致找出运输的大方向
        show_figure:True 查看聚类的可视化
        '''
        # 连接mysql 'mysql+pymysql://用户名:密码@localhost:3306/数据库名
        engine = create_engine('mysql+pymysql://root:[email protected]:3306/vehicle')
        order = pd.read_sql_table('goods_order', engine)
        self.order = order.copy()
        self.engine = engine
        # order.columns = ['id', '1', '2', 'from',
        #                  '3', '4', 'to', 'weight']
        order = order[['sender_address', 'receive_address', 'order_weight']]

        # 删除起始点,对其他要分发的点进行聚类
        city = order['sender_address'][0]

        del_index = self.m_list.index(city.strip('市'))
        self.city_start = del_index  # start_city -> map_dict[start_city]

        arr = [[item[0], item[1]] for item
               in self.map_dict.values()]
        data = pd.DataFrame(arr, columns=['x', 'y'])
        self.y_mean = data['y'].mean()

        # todo 测试
        if test:
            return

        # 删除起始点 by 索引
        data.drop(index=del_index, inplace=True)
        # data = data.reset_index()  # 重置索引
        print(data)
        n_cluster = 3
        km = KMeans(n_clusters=n_cluster).fit(data)
        y_pred_ = km.labels_  # 类别预测
        centroid = km.cluster_centers_  # 聚类中心
        # 标记簇标签
        city_class = {i: y_pred_[j] for i, j in zip(data.index, range(0, 16))}
        print(city_class)
        print(city_class.values())
        print(self.map_dict)

        if show_figure_matplotlib:
            color = ['red', 'blue', 'green']
            fig, ax1 = plt.subplots(1)
            y_pred = km.labels_

            # 画出对应分类的散点图
            for i in range(n_cluster):
                ax1.scatter(data.iloc[y_pred_ == i, 0], data.iloc[y_pred_ == i, 1]
                            , marker='o'
                            , s=50
                            , c=color[i]
                            )
            if n_cluster == 3:
                print(y_pred)
            # 画出聚类中心
            ax1.scatter(centroid[:, 0], centroid[:, 1]
                        , marker='x'
                        , s=50
                        , c='black')

            # 加入起始点,均值的分割线
            xx = data['x'].mean()
            yy = data['y'].mean()
            ax1.scatter(xx, yy)
            plt.hlines(yy, 111, 116, colors="black", linestyles="dashed")
            plt.show()

        if show_figure_echarts:
            print('这里没必要写了!嘻嘻![]~( ̄▽ ̄)~*')

        return city_class

    def _cluster(self, up_2, class_upper, plot_matplotlib=False,
                 plot_echarts=False) -> (list, list, list):
        '''对某个部分进行聚类
        class_upper:
            表示是否是在所有点的 y 均值之上的点
            key: city_index  value: 0 or 1

        :return 聚好的2类城市的列表 class_0, class_1 另一边的城市列表 (都是不包含起始点的)
        '''
        if up_2:
            # 找出上面的点进行聚类
            cities = [key for key, value in class_upper.items() if value == 1]
        else:
            cities = [key for key, value in class_upper.items() if value == 0]

        try:
            cities.remove(self.city_start)  # 去除起始点
        except:
            pass

        # todo 将与此部分的点没有联通,但是与另一部分的点有联通的归为另一边(这些点会影响聚类结果,并且不符合业务)
        should_cluster = deepcopy(self.init_data)  # 新的要聚两类中的点组成的无向图
        should_not_cluster = dict()
        other_cities = []  # 另一边的城市

        # 分开两边的点
        for k, v in class_upper.items():
            if k not in cities:
                other_cities.append(k)
                should_cluster.pop(k)
                should_not_cluster[k] = v

        # 如果一个点的!!所有子结点!!都不在这一部分里,在无向图中删除,并放到另一边
        for k, v in list(should_cluster.items()):
            not_in_sum = 0
            for next_node in v:
                if next_node not in cities:
                    not_in_sum += 1

            if not_in_sum == len(v):
                other_cities.append(k)
                cities.remove(k)
                should_cluster.pop(k)
                should_not_cluster[k] = v

        arr = []

        # 构建二维的数据矩阵
        for c in cities:
            arr.append([*self.map_dict[c]])
        data = pd.DataFrame(arr)

        n_cluster = 2
        # km = DBSCAN(eps=1.2, min_samples=3).fit(data)
        km = KMeans(n_clusters=n_cluster, random_state=6).fit(data)
        y_pred_ = km.labels_  # 类别预测

        print(cities)
        print(y_pred_)
        print(other_cities)

        centroid = km.cluster_centers_  # 聚类中心
        # city_class = {i:y_pred_[j] for i, j in zip(data.index, range(0, len(cities)))}

        # todo 将与自己的类里面无联通,但是与另一个类的点有联通的归为那一类
        class_1 = [cities[index] for index, j in enumerate(y_pred_) if j == 1]
        class_0 = [cities[index] for index, j in enumerate(y_pred_) if j == 0]

        for c in cities:
            _sum = 0
            out_sum = 0
            if c in class_0:
                c_mark = 0  # c_mark 当前点的类别
            else:
                c_mark = 1
            c_list = should_cluster[c]  # 单点点对应的子结点列表
            for node in c_list:
                if node not in cities:
                    out_sum += 1
                    continue
                node_mark = 0 if node in class_0 else 1
                if c_mark != node_mark:
                    _sum += 1
            if len(c_list) == _sum + out_sum:
                if c_mark == 0:
                    class_0.remove(c)
                    class_1.append(c)
                else:
                    class_1.remove(c)
                    class_0.append(c)

        if plot_matplotlib:
            color = ['red', 'blue']
            fig, ax1 = plt.subplots(1)
            y_pred = km.labels_

            for i in range(n_cluster):
                ax1.scatter(data.iloc[y_pred == i, 0], data.iloc[y_pred == i, 1]
                            , marker='o'
                            , s=50
                            , c=color[i]
                            )

                ax1.scatter(centroid[:, 0], centroid[:, 1]
                            , marker='x'
                            , s=50
                            , c='black'
                            )
            plt.savefig('./ttesst.jpg')
            plt.show()

        # 不需要聚类那一边的点
        # class_another = [x for x in range(0, 17) if x not in class_0
        #                     and x not in class_1].remove(self.city_start) 注意这个列表推导式有毒!

        # 另一边的点
        class_another = []
        for x in range(0, 17):
            if x not in class_0:
                if x not in class_1:
                    class_another.append(x)

        # fp =  open('./地图可视化.pk', 'wb')
        # pickle.dump({2:class_0, 5: class_1, 8:class_another}, fp)
        # f = open('./城市经纬度.pk', 'wb')
        # pickle.dump(self.map_dict, f)
        # ff = open('./m_list.pk', 'wb')
        # pickle.dump(self.m_list, ff)
        # fp.close()
        # f.close()
        # ff.close()

        if plot_echarts:
            temp_d = {}
            d = {2: class_0, 5: class_1, 8: class_another}
            for key, value in d.items():
                for v in value:
                    if v == self.city_start:
                        continue
                    temp_d[self.m_list[v]] = key
            temp_d[self.m_list[self.city_start]] = 11
            g = Geo()
            g.add_schema(maptype='河南')
            data_pair = list(temp_d.items())
            g.add('', data_pair, type_=GeoType.EFFECT_SCATTER, symbol_size=15)
            g.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
            pieces = [
                {'min': 0, 'max': 3, 'label': '类别1', 'color': '#50A3BA'},  # blue
                {'min': 4, 'max': 6, 'label': '类别2', 'color': '#81AE9F'}, # green
                {'min': 7, 'max': 8, 'label': '类别3', 'color': '#E2C568'}, # yellow
                {'min': 10, 'max': 12, 'label': '起始点', 'color': '#FF8C00'} # orange
            ]
            g.set_global_opts(
                visualmap_opts=opts.VisualMapOpts(is_piecewise=True, pieces=pieces),
                title_opts=opts.TitleOpts(title=f"物流路径规划-城市聚类-起始点{self.m_list[self.city_start]}"),
            )

            g.render(f'物流路径规划之城市聚类-{self.m_list[self.city_start]}.html')
            # self.fix_cluster_graph(class_0, class_1, class_another)

        return class_0, class_1, class_another

    def fix_cluster_graph(self, class1, class2, class3):
        '''
        判断某个类是否于起始点连通
        如果与起始点不连通,则寻找从起始点到这个类的最短路径
        用一个全局变量记录其中的结点,后面分配重量的时候使用
        '''
        class_list = [class1, class2, class3]
        # 对于最上面的点和最下面的点会出现空列表 []
        class_list = [i for i in class_list if i!=[self.city_start]]
        print('class_list -> ', class_list)
        is_connected = {}  #  key: class_list_index  value: bool

        # 判断每个类与起始点是否连通
        for index, class_i in enumerate(class_list):
            for node in class_i:
                node_list = self.init_data[node]
                for n in node_list:
                    if n == self.city_start:
                        is_connected[index] = True
                        break
            if not is_connected.get(index):
                is_connected[index] = False

        # 对于与起始点没有连通的那一个簇, 添加起始点到这个簇里面某一个点中间经过的结点
        # 用一个全局变量标记这些 "中间点"
        # 正常来说起始点最多只会与一个类不存在连通,等后边每一个都验证一遍就知道了
        for key, value in is_connected.items():
            if not value:
                extend_list = []
                class_j = class_list[key]  # 与起始点没有连通的那一个簇的点
                min_path_weight = inf  # 记录最小值
                prior = None  # 记录最小值对应的路径经过的结点
                for end in class_j:
                    self.path(self.init_data, class_j, start_=self.city_start, end_=end)
                    if self.min_sum < min_path_weight:
                        min_path_weight = self.min_sum
                        prior = self.real_path
                self.prior = prior
                for node in prior:
                    if node not in class_j:
                        if node != self.city_start:
                            extend_list.append(node)
                extend_list = [self.city_start, *extend_list, *class_j]
                class_list[key] = extend_list

        self.is_connected = is_connected

        return class_list

    def get_best_trucks(self, weight_sum):
        '''
        深度优先搜索找车辆分配的最优解
        找到:能装满,并且车的载重量之和最小的那几辆车去运输
        寻找每一次路径的局部最优解
        :return: truck_list, truck_id_list
        '''
        capacity_list = []
        id_list = []
        self.real_capacity_list = []
        self.real_id_list = []
        self.min_sum = inf

        def insert(index):
            capacity_list.append(self.truck_list_all[index])
            id_list.append(self.truck_id_list_all[index])

        def remove(index):
            capacity_list.remove(self.truck_list_all[index])
            id_list.remove(self.truck_id_list_all[index])

        def dfs():
            if sum(capacity_list) > weight_sum:
                if sum(capacity_list) < self.min_sum:
                    self.real_capacity_list = deepcopy(capacity_list)
                    self.real_id_list = deepcopy(id_list)
                    self.min_sum = sum(capacity_list)
                    return
                return

            for j in range(len(self.truck_list_all)):
                if not visited[j]:
                    visited[j] = True
                    insert(j)
                    dfs()
                    remove(j)
                    visited[j] = False

        visited = {i: False for i in range(len(self.truck_list_all))}
        for i in range(len(self.truck_list_all)):
            if not visited[i]:
                visited[i] = True
                insert(i)
                dfs()
                remove(i)
                visited[i] = False

        # return real_capacity_list, real_id_list

    def get_best_trucks_dp(self, weight_sum):
        '''
        动态规划找车辆分配的最优解
        '''
        # 为了提升程序的鲁棒性,对重量需要减小的倍数进行估计
        # capacity_mean = int(sum(self.truck_list_copy) / len(self.truck_list_copy))
        # for i in range(5):
        #     if capacity_mean // 10**i == 0:
        #         break
        #
        # div_num = 10**i
        # print('div_num', div_num)

        self.real_capacity_list = []
        self.real_id_list = []
        truck_list_all = [0] + self.truck_list_all

        # 减小构造二维数据的维度
        truck_list_all = list(map(lambda x: int(x//100), truck_list_all))
        weight_sum = int(weight_sum // 100)

        n = truck_list_all.__len__()
        w = int(sum(truck_list_all))
        dp = [[w for j in range(w+1)] for i in range(n)]  # dp 数组

        for i in range(1, n):
            for j in range(w, weight_sum, -1):
                if j >= truck_list_all[i] + weight_sum:
                    dp[i][j] = min([dp[i-1][j],
                                    dp[i-1][j-truck_list_all[i]] - truck_list_all[i]])
                else:
                    dp[i][j] = dp[i-1][j]

        print('最优分配的货车总重和 -> ', dp[-1][-1]) # 最优解的货车总重量

        mark = [0 for k in range(len(truck_list_all))] # 标记数组

        # 回溯找出最优解的组成
        def get_ensemble(i, j):
            if i >= 0:
                if dp[i][j] == dp[i-1][j]:
                    mark[i] = 1
                    get_ensemble(i-1, j)
                elif j >= truck_list_all[i] + weight_sum and \
                    dp[i][j] == dp[i-1][j-truck_list_all[i]] - truck_list_all[i]:
                    mark[i] = 0
                    get_ensemble(i-1, j-truck_list_all[i])

        get_ensemble(n-1, w)
        for index, one in enumerate(mark):
            if one == 1:
                if index != 0:
                    self.real_capacity_list.append(self.truck_list_all[index-1])
                    # self.real_id_list.append(self.truck_id_list_all[index-1])


    def calculate(self, method='dynamic_programming'):
        '''
        method:
        货车分配使用的方法
        'dynamic_programming' 使用动态规划寻找货车分配的最优解
        'callback_recursion'  使用深度优先搜索,寻找货车分配的最优解

        分发重量到每一个点
        求每一个点之间的最短路径,如果前面是交集的,后面的点就从那里走
        '''
        self.method = method

        order = self.order
        truck = pd.read_sql_table('truck', self.engine)
        # truck['truck_id'] = truck['truck_id'] - 1

        def apply_func(arg):
            arg = arg.strip('市')
            here = self.m_list.index(arg)
            return here

        truck['carrying_capacity'] = truck['carrying_capacity'] * 1000  # 吨和 kg 单位换算

        # 初始化要进行货车分配的变量
        self.truck_list_all = []
        self.truck_id_list_all = []

        for row in truck.iterrows():
            if row[1]['truck_status'] == 0:
                self.truck_list_all.append(row[1]['carrying_capacity'])
                self.truck_id_list_all.append(row[1]['truck_id'])

        # 副本,给 dp 之后找 id 使用,让对应的下标可以搜索到原始的信息
        self.truck_list_copy = deepcopy(self.truck_list_all)
        self.truck_id_list_copy = deepcopy(self.truck_id_list_all)
        self.used = {i:False for i in range(len(self.truck_list_copy))}

        s = order[order['order_status'] == 0]['order_weight'].sum()


        if sum(self.truck_list_all) < s:
            print('这车运不完呀老弟 Σ( ° △ °|||)︴')
            with open('./json_data.json', 'w') as fp:
                json.dump({'0':'error'}, fp)
            return {'0': 'error'}

        capacity_sort = truck['carrying_capacity'].sort_values(ascending=False)  # 根据车的载重量进行排序 
        print('orginal -> ', capacity_sort)
        capacity_sort_stb = truck['carrying_capacity'].sort_values()
        order['receive_address'] = order['receive_address'].apply(apply_func)
        city_weight = order.groupby(by='receive_address')
        city_weight_sum = city_weight.sum()
        city_weight_sum = city_weight_sum['order_weight']  # 分组聚合后是二重索引,分组键为一级索引

        # todo 找到要去的每一个类里面
        class_list = self.distribute()  # (list, list , list) 0 1 another, or just 0 and 1

        # ()
        memory_seq = []
        fix_class_list = self.fix_cluster_graph(*class_list)

        # 找对短路径的时候不能回到起始点 self.start_city
        for index, _class in enumerate(class_list):
            # 切断与其他类的连通关系,但是与起始点要保持,寻找里面每一个点的最短路径
            graph = {}  # 类和起始点组成的无向图
            for c in _class:
                graph[c] = self.init_data[c]

            graph[self.city_start] = self.init_data[self.city_start]  # 添加起始点的连通状态
            temp = deepcopy(_class)
            temp.append(self.city_start)

            # 删除和其他类的点之间的联通关系
            for t in temp:
                node_list = graph[t]
                new_node_list = list()
                for node in node_list:
                    if node in temp:
                        new_node_list.append(node)
                        graph[t] = new_node_list
            # 如果起始点与某个类之间没有连通
            # 向当前这个图中添加起始点到这个类最短路径上的结点,并更新连通关系
            try:
                if not self.is_connected[index]:
                    d = len(self.prior) - 2
                    if d == 1:
                        graph[self.prior[-1]].append(self.prior[-2])
                        graph[self.prior[0]] = [self.prior[1]]
                        graph[self.prior[1]] = [self.prior[0], self.prior[-1]]
                    elif d > 1:
                        graph[self.prior[0]] = [self.prior[1]]
                        graph[self.prior[-1]].append(self.prior[-2])
                        for inner_index, j in enumerate(self.prior[1:-1]):
                            graph[j] = [self.prior[inner_index], self.prior[inner_index+2]]
            except KeyError:
                pass

            memory_seq.append((graph, _class))

        print(memory_seq)

        get_weight = {key:False for key in range(0, 17)}  # 标记某个结点是否分配过重量
        json_dict = {}  # 最后得到的结果
        global_num = 0

        # todo 寻找起点到每一个结点的最短路径经过的结点
        for graph, _class in memory_seq:
            all_path = []
            for end in _class:
                if end == self.city_start:
                    continue
                self.path(graph, _class, start_=self.city_start, end_=end)
                all_path.append(self.real_path)
            # print('all_path->', all_path)

            # 对于一个路径经过的结点组成的数组,如果里面的全部元素是另一个数组的子数组(即子路径),那么就属于同一条路
            # todo 最短路径前 k 个结点的合并子集
            # 判断 1. 全部在里面
            # 判断 2. 前面 n 个元素在里面,第 n+1 不等
            sub_set = {index: row for index, row in enumerate(all_path)}
            sub_set_copy = deepcopy(sub_set)

            for index_i, row_i in sub_set.items():
                for index_j, row_j in sub_set.items():
                    if index_i == index_j:
                        continue

                    if len(row_i) < len(row_j):
                        flag = 1
                        for i in range(len(row_i)):
                            if row_i[i] != row_j[i]:
                                flag = 0
                        if flag:
                            # print(index_i, index_j)
                            sub_set_copy.pop(index_i)
                            break

            # print('go---->', sub_set_copy)

            # 计算每个类中,总订单重量
            # 如果某个城市订单总量为 0
            for path in sub_set_copy.values():
                # print(path)
                path.remove(self.city_start)
                weight_sum = 0  # 这条路径上的订单总重量
                for c in path:
                    if not get_weight[c]:
                        weight = city_weight_sum[c]  # todo city_weight_sum 本来就应该改为  order_id == 0 的
                        weight_sum += weight
                        get_weight[c] = True

                # print('weight_sum -> ', weight_sum)
                # 找出所有的这条路上的订单信息
                # todo 先运行这个,在跑动态规划
                all_order = []
                s = 0
                for r in order.iterrows():
                    if r[1]['order_status'] == 0:
                        if r[1]['receive_address'] in path:
                            all_order.append(r[1]['order_id'])
                            s += r[1]['order_weight']
                # print('gg_list', all_order)
                print('gg!!!s----->', s)

                truck_list = list()
                truck_id_list = []
                temp_weight = s

                # todo 分配
                if self.distribute_method == 'full_trucks':
                    if self.method == 'dynamic_programming':
                        self.get_best_trucks_dp(temp_weight)
                    else:
                        self.get_best_trucks(temp_weight)

                    truck_list = deepcopy(self.real_capacity_list)
                    truck_id_list = deepcopy(self.real_id_list)
                    print(truck_list)

                    # 每一次选出来的那些要从全局的变量中删除
                    if self.method == 'dynamic_programming':
                        truck_id_list = []
                        # 如果使用 dp 的话,id会乱,换种方法找 id,根据重量找
                        for one in truck_list:
                            for iindex, truck in enumerate(self.truck_list_copy):
                                if truck == one and self.used[iindex] == False:
                                    self.used[iindex] = True
                                    truck_id_list.append(self.truck_id_list_copy[iindex])
                                    break
                        for one in truck_list:
                            self.truck_list_all.remove(one)
                    else:
                        for one in truck_list:
                            self.truck_list_all.remove(one)
                        for one in truck_id_list:
                            self.truck_id_list_all.remove(one)
                else:
                    def delete(Index):
                        '''根据值,找到 Series 的索引,删除 capacity_sort 的对应行'''
                        print('Index', Index)
                        capacity_sort_stb.drop(index=Index, inplace=True)
                        capacity_sort.drop(index=Index, inplace=True)
                        truck_id_list.append(Index)

                    # 删的时候 capacity_sort_stb 和 capacity_sort 对应的索引一起删
                    # 如果 temp_weight < 核载最大的车,找核载大于temp_weight,但是核载最小的车
                    if capacity_sort.iloc[0] > temp_weight:
                        for r in capacity_sort_stb.items():
                            if r[1] > temp_weight:
                                if int(truck.iloc[r[0]]['truck_status']) == 0:
                                    truck_list.append(r[1])
                                    delete(r[0])
                                    break
                    else:  # 最大的核载量比 temp_weight 都小
                        # while temp_weight > capacity_sort.max():
                        for r in capacity_sort.items():
                            if temp_weight > capacity_sort.max():
                                if int(truck.iloc[r[0]]['truck_status']) == 0:
                                    temp_weight -= r[1]
                                    truck_list.append(r[1])
                                    delete(r[0])
                                    if temp_weight < capacity_sort.min():
                                        break
                            else:
                                # 判断一下是不是每一个值都相同
                                if len(set(capacity_sort)) == 1:
                                    pass
                                else:
                                    for k in range(1, capacity_sort.shape[0]):
                                        if temp_weight < capacity_sort.iloc[k - 1] and \
                                                temp_weight > capacity_sort.iloc[k]:

                                            t_capacity = capacity_sort.iloc[k - 1]
                                            for x, y in capacity_sort.items():
                                                if y == t_capacity:
                                                    break
                                            if truck.iloc[x]['truck_status'] == 0:
                                                flag = 1
                                                truck_list.append(t_capacity)
                                                delete(x)
                                                temp_weight -= t_capacity

                                    if flag == 1:
                                        break
                                if flag == 1:
                                    break

                        if temp_weight > 0:
                            assert capacity_sort.shape[0] > 0
                            for r in capacity_sort_stb.items():
                                if r[1] > temp_weight:
                                    if int(truck.iloc[r[0]]['truck_status']) == 0:
                                        truck_list.append(r[1])
                                        delete(r[0])
                                        break

                # print(self.real_capacity_list)
                # print(self.real_id_list)
                print('truck_id_list -> ', truck_id_list)
                # print('weight_sum -> ', weight_sum)
                print('truck_list -> ', truck_list)



                # 给不同重量的车分配订单

                truck_index = 0
                ssum = 0
                truck_orders_dict = dict()
                orders_weight_dict = defaultdict(list)
                error_flag = 0
                try:
                    for _index, g in enumerate(all_order):
                        # 如果车的数量不够的话,防止报错
                        # try:
                        #     _ = truck_list[_index]
                        # except IndexError:
                        #     error_flag = 1

                        r_weight = order[order['order_id'] == g]['order_weight'].values[0]
                        if r_weight + ssum > truck_list[truck_index]:
                            truck_orders_dict[truck_index] = ssum
                            truck_index += 1
                            ssum = 0
                        # 如果为最后一条,把剩下的全部加进去
                        if truck_index == len(truck_list) - 1:
                            sssum = 0
                            for jj in range(_index, len(all_order)):
                                sssum += order[order['order_id'] == all_order[jj]]['order_weight'].values[0]
                                orders_weight_dict[truck_index].append(all_order[jj])
                            truck_orders_dict[truck_index] = sssum
                            break
                        ssum += r_weight
                        orders_weight_dict[truck_index].append(g)
                except:
                    error_flag = 1

                # print(path)
                # print(truck_orders_dict) # truck_orders_dict 和 orders_weight_dict 是相反的
                # print(truck_list)
                # print(orders_weight_dict)
                if not error_flag:
                    json_dict[global_num] = {}
                    json_dict[global_num]['error'] = 0
                    json_dict[global_num]['truck_number_list'] = [kk for kk in truck_id_list]
                    json_dict[global_num]['path'] = [self.m_list[i] for i in path]
                    # json_dict[global_num]['orders_weight'] = [truck_orders_dict[i] for i in range(len(truck_list))]
                    json_dict[global_num]['orders_weight'] = {}
                    json_dict[global_num]['order_id_list'] = [orders_weight_dict[j] for j in range(len(truck_list))]
                    print('tod', truck_orders_dict)
                    print('owd', orders_weight_dict)

                    for key, value in orders_weight_dict.items():
                        print('key', key)
                        print('value', value)
                        if value:
                            _sum = 0
                            for _id in value:
                                # 订单id从1开始,索引从0开始
                                x = order['order_weight'].iloc[_id - 1]
                                _sum += x
                                json_dict[global_num]['orders_weight'][key] = _sum

                    # print(json_dict[global_num]['orders_weight'])
                    if json_dict[global_num]['orders_weight'].keys():
                        max_a = max(json_dict[global_num]['orders_weight'].keys())
                        a = []
                        for kkk in range(max_a+1):
                            a.append(json_dict[global_num]['orders_weight'][kkk])
                        json_dict[global_num]['orders_weight'] = a
                    else:
                        json_dict[global_num]['orders_weight'] = []
                    global_num += 1
                else:
                    json_dict[global_num] = {}
                    json_dict[global_num]['error'] = 1
                    json_dict[global_num]['path'] = [self.m_list[i] for i in path]
                    json_dict[global_num]['order_id_list'] = all_order
                    global_num += 1


        with open('./json_data.json', 'w') as fp:
            json.dump(json_dict, fp, ensure_ascii=False)
        return json_dict



    def distribute(self):
        '''
        y_0 起始点的 y 值
        在起始点 y_0 之上  class_upper.value = 1
        up_2: True  要对位于起始点之上的点聚2类
        '''
        # city_class = self._cluster()
        x_0, y_0 = self.map_dict.get(self.city_start)  # 起始点
        # 根据起始点 以下分为一部分,以上分为另一部分
        class_upper = dict()
        for key, value in self.map_dict.items():
            _, y = value
            if y > y_0:
                class_upper[key] = 1
            else:
                class_upper[key] = 0

        # 起始点在均值之上的话下面的点聚2个类,否则下面聚2个类
        # 聚2个类就是为了找到2个大致要运输的方向
        up_2 = True  # up_2 = True 表示上面要聚类两个
        if y_0 > self.y_mean:
            up_2 = False

        class_0, class_1, class_another = self._cluster(up_2, class_upper, plot_echarts=True, plot_matplotlib=False)

        return class_0, class_1, class_another

    def run(self):
        self._initialize()
        # self.path()
        self.orginal_cluster()
        # self.distribute()
        j = self.calculate(method='123')
        return j


if __name__ == '__main__':
    r = Router(distribute_method='full_trucks')
    # r = Router(distribute_method='min_trucks_sum')
    r.run()

你可能感兴趣的:(PLC,WCS系统)