使用Hypothesis生成测试数据

  • 专注于分享软件测试干货内容,欢迎点赞 收藏 ⭐留言 如有错误敬请指正!
  • 交流讨论:欢迎加入我们一起学习!
  • 资源分享:耗时200+小时精选的「软件测试」资料包
  • 最困难的时候,也就是我们离成功不远的时候!

目录

    • 安装
    • 如何设计测试数据
    • 用 hypothesis生成测试数据
    • 最后

Hypothesis是Python的一个高级测试库。它允许编写测试用例时参数化,然后生成使测试失败的简单易懂的测试数据。可以用更少的工作在代码中发现更多的bug。

安装

pip install hypothesis

如何设计测试数据

通过介绍也许你还不了解它是干嘛的,没关系!我们举个例子。

首先,我有一个需要测试的函数:

def add(a, b):
    """实现加法运算"""
    return a + b

测试代码是这样的:

import unittest


class AddTest(unittest.TestCase):

    def test_case1(self):
        c = add(1, 2)
        self.assertEqual(c, 3)

    def test_case2(self):
        c = add(0, 2)
        self.assertEqual(c, 2)

    def test_case3(self):
        c = add(-2, 2)
        self.assertEqual(c, 0)


if __name__ == '__main__':
    unittest.main()

为了更全面的验证的 add() 函数,我必须设计足够多的 测试数据, 同样也需要很多条用例!

当然,为了测试足够多的数据,我们也可以将代码改称这样。

import unittest
from random import randint


class AddTest(unittest.TestCase):

    def test_case(self):
        for i in range(10):
            a = randint(-32768, 32767)
            b = randint(-32768, 32767)
            print("a->", a)
            print("b->", b)
            c1 = a + b
            c2 = add(a, b)
            self.assertEqual(c1, c2)


if __name__ == '__main__':
    unittest.main()


通过调用 randint() 函数生成随机数。循环10次(也可以是100次,1000次),用更少的代码做更多的测试,测试的数据越多,发现bug的可能性越大。

测试结果如下:

> python test_hypothesis_demo.py

a-> 11503
b-> -784
a-> -31548
b-> 13057
a-> 22033
b-> 3618
a-> -32249
b-> 28025
a-> -15429
b-> 31055
a-> 16095
b-> 13445
a-> -31536
b-> 14606
a-> 18655
b-> -18039
a-> 17923
b-> -12079
a-> -9256
b-> -26440
.
------------------------
Ran 1 test in 0.002s

OK

用 hypothesis生成测试数据

上面的测试数据很难随机到 边界值,除非我手动设计数据,而且用for循环也不是太好的设计。是时候让hypothesis登场了。

import unittest
from hypothesis import given, settings
import hypothesis.strategies as st


class AddTest(unittest.TestCase):

    @settings(max_examples=10)
    @given(a=st.integers(), b=st.integers())
    def test_case(self, a, b):
        print("a->", a)
        print("b->", b)
        c1 = a + b
        c2 = add(a, b)
        self.assertEqual(c1, c2)

if __name__ == '__main__':
    unittest.main()

通过@given() 装饰测试用例,调用strategies 模块下面的 integers() 方法生成随机的测试数。在@setting()装饰器中通过max_examples用来控制随机数的个数。

运行结果如下:

> python test_hypothesis_demo.py

a-> 0  
b-> 0  
a-> 5980  
b-> -3607224505277606703
a-> 324106882
b-> 23975
a-> 23272
b-> 4917  
a-> 107
b-> -155  
a-> -4500
b-> -8303
a-> 2683  
b-> 4384  
a-> 27
b-> -81
a-> -122472823694675410551869872440384533757  
b-> -89
a-> 19075
b-> 4362  
.
-------------------------------------------------
Ran 1 test in 0.032s

hypothesis 生成的数据会更具有 测试价值,对吧? hypothesis 还可以生成更多类型的测试数据。例如 email格式和text格式。

email-> [email protected]
text->
email-> ^[email protected] text->  -
email-> 6a#@T.HKt
text-> ↕
email-> '/YAw/[email protected]
text-> +�
email-> *xh*-#t5$0-L8O&r10XnXU-**+e%[email protected]
text-> #�����/���+
�)�▲�
email-> 2U!N0+|*%[email protected]
text->
email-> &i/o!F*@xuW--03.p00-t0Y-0Z0.MW.K-000-n-sB0rR-0L.Y.y2u.NXptL0bgG-0U.XN--FLw351E
text-> �0▲-���
email-> oK*[email protected]
text-> ☺
email-> /@mOL.Y-Q.j.p.d-3Mzi.i.Utv-M.yachts
text-> (
email-> 4ql$y2%[email protected]
text->

这些数据看上去就具有很高的测试价值。好吧!测试一定明白我在说什么。

问题来了,我们可以将 hypothesis 生成的数据应用到 Web或接口自动化测试中么?


最后

如果你想学习自动化测试,那么下面这套视频应该会帮到你很多

如何逼自己1个月学完自动化测试,学完即就业,小白也能信手拈来,拿走不谢,允许白嫖....

最后我这里给你们分享一下我所积累和整理的一些文档和学习资料,有需要直接领取就可以了!


以上内容,对于软件测试的朋友来说应该是最全面最完整的备战仓库了,为了更好地整理每个模块,我也参考了很多网上的优质博文和项目,力求不漏掉每一个知识点,很多朋友靠着这些内容进行复习,拿到了BATJ等大厂的offer,这个仓库也已经帮助了很多的软件测试的学习者,希望也能帮助到你。

​​

​​​​

你可能感兴趣的:(软件测试,测试工具,postman,自动化测试)