- 时序大模型:技术需求、现有成果及主流模型、模型架构、数据处理方式、优势、缺点及未来展望
xl.liu
架构人工智能
时序大模型:技术需求、现有成果及主流模型、模型架构、数据处理方式、优势、缺点及未来展望时序大模型如何保证数据的完整性和准确性时序大模型的性能高度依赖于数据的质量和完整性。为了确保模型的预测和分析结果准确可靠,需要采取一系列措施来保证数据的完整性和准确性。数据清洗:去除异常值:通过统计方法或机器学习算法检测并去除异常值,确保数据的合理性。填补缺失值:使用插值方法、均值填充、中位数填充或基于模型的预测
- Redis哨兵模式(sentinel)学习总结及部署记录(主从复制、读写分离、主从切换)
coding996
Redis哨兵模式(sentinel)学习总结及部署记录(主从复制、读写分离、主从切换)https://segmentfault.com/a/1190000020849841Redis的集群方案大致有三种:1)rediscluster集群方案;2)master/slave主从方案;3)哨兵模式来进行主从替换以及故障恢复。一、sentinel哨兵模式介绍Sentinel(哨兵)是用于监控redis集
- streamparse,一个超强的 Python 实时流数据处理库!
浅沫云归
pythonc#开发语言
️个人主页:鼠鼠我捏,要死了捏的主页️付费专栏:Python专栏️个人学习笔记,若有缺误,欢迎评论区指正前言大家好,今天为大家分享一个超强的Python库-streamparse。Github地址:https://github.com/Parsely/streamparse在大数据处理领域,实时流数据处理变得越来越重要。Streamparse是一个优秀的工具,可以帮助开发人员轻松构建和管理实时流数
- 机器学习数学基础:36.φ相关系数分析
@心都
机器学习人工智能
用φ相关系数分析性别与心理测验态度关系的教程一、学习目标学会使用φ相关系数分析两个二分变量(如性别男/女、对心理测验态度肯定/否定)之间的关系,并通过卡方检验判断结果是否具有统计学意义。二、数据准备假设我们想研究青年大学生的性别和对心理测验的态度之间的关系,收集到如下2×22×22×2列联表数据(调查了170170170人):肯定否定合计男生222222888888110110110女生18181
- 机器学习数学基础:37.偏相关分析
@心都
机器学习人工智能
偏相关分析教程一、偏相关分析是什么在很多复杂的系统中,比如地理系统,会有多个要素相互影响。偏相关分析就是在这样多要素构成的系统里,不考虑其他要素的干扰,专门去研究两个要素之间关系紧密程度的一种方法。用来衡量这种紧密程度的数值,叫做偏相关系数。举个简单例子,在研究一个地区的房价时,房价会受到很多因素影响,像地段、房屋面积、周边配套设施等。如果我们想知道单纯的房屋面积和房价之间的关系,就可以用偏相关分
- 机器学习数学基础:22.对称矩阵的对角化
@心都
机器学习矩阵概率论
一、核心概念详解(一)内积定义与公式:在nnn维向量空间中,对于向量x⃗=(x1,x2,⋯ ,xn)\vec{x}\=(x_1,x_2,\cdots,x_n)x=(x1,x2,⋯,xn)和y⃗=(y1,y2,⋯ ,yn)\vec{y}\=(y_1,y_2,\cdots,y_n)y=(y1,y2,⋯,yn),内积记作(x⃗,y⃗)(\vec{x},\vec{y})(x,y),其计算公式为(x⃗,y⃗
- Golang从入门到精通
Wxhzy930120
课程概述Golang从入门到精通,本课程以学习Golang语言开发互联网产品为目标,从基础理论知识入手,详实地讲解Golang语言的开发方法与技巧,并通过大量的线上训练,带领同学们全面掌握服务端高并发、过载保护、水平扩展、服务降级、服务限流以及微服务等主流互联网产品的开发技术栈,快速达到大公司工作两年的技术水平。章节1:Golang环境搭建课时1课程介绍10:08课时2Go的发展历史02:08课时
- 2025年信息科学与工程学院科协单片机编程介绍——按键拓展编程
HHUCESTA
c语言单片机嵌入式硬件
按键编程拓展与状态机编程起源在学习按键的过程中,随着学习的不断深入,我们常常会遇到双击,长按,多次单机的判断,这样就需要更完善的按键代码逻辑,以下介绍两种代码编程逻辑,供大家参考。PS:此处代码逻辑以STM32为基础,并且默认大家已经学会最为基本的按键编写与消抖逻辑。四行代码与编程判断uint8_tkey_val;uint8_tkey_old;uint8_tkey_up;uint8_tkey_do
- 学习计算机网络
慕容晓开
日常学习学习网络
a类0~127,b类128~191,c类192~223网络地址:看子网掩码,分网络位和主机位,后面是主机位,主机位全部为0,网络地址。直接广播地址:看子网掩码,分网络位和主机位,后面是主机位,主机位全部为1,直接广播地址。主机号:看子网掩码,分网络位和主机位,后面是主机位,网络位全部0,主机号。子网内的第一个和最后一个可用ip地址:网络地址加1,直接广播地址减1。
- ioctl函数讲解
随便取个六字
v4l2linux
在学习Linux设备驱动和视频开发的时候,对于这个函数又去了解了一下,因为之前觉得似懂非懂,所以这里来个总结吧,下面的都是在v4l2上面来讲解一下1.ioctl是什么?可以把ioctl(Input/OutputControl)想象成一个万能遥控器。就像平时用遥控器控制电视(换台、调音量、设置画质),ioctl就是用来控制各种硬件设备的“遥控器”2.为什么需要它?普通的read()和write()只
- Linux驱动:关于Linux权限的概念(我觉得很全面)
随便取个六字
linux运维服务器
本文仅作为学习,如果有错误欢迎指正,有雷同算我抄他,我认错如果涉及侵权立马删除全文近4000字一、Linux用户与权限管理在Linux系统中,用户分为两种主要类型root(超级用户):具有系统中最高的权限,可以执行任何操作,不受系统限制。提示符:当以root用户登录时,命令行的提示符通常是#,表示你有超级用户权限。普通用户:具有有限的权限,不能随意操作系统关键文件,主要用来执行日常任务。提示符:普
- 机器学习数学基础:34.点二列
@心都
机器学习概率论人工智能
点二列相关教程一、点二列相关的定义点二列相关是一种统计方法,用于衡量两个变量之间的相关程度。在这种相关分析中,一个变量是正态连续性变量,取值可以是连续的数值,比如身高、体重、考试分数等;另一个是真正的二分名义变量,其两个类别是天然存在、相互独立的,不能再细分,像性别(男/女)、是否吸烟(是/否)、抛硬币的结果(正面/反面)等。二、适用场景点二列相关常用于研究天然二分变量与连续变量之间的关系。例如在
- 免费 MLOps 课程:学习机器学习运维的完整流程
真智AI
学习机器学习运维免费教程
掌握MLOps:训练和跟踪实验、构建ML流水线、模型部署、生产环境监控,并从DevOps采用最佳实践。免费MLOps课程概览(DataTalks.Club提供)课程平台:DataTalks.Club适合人群:有一定Python和ML经验的开发者重点内容:模型训练、实验跟踪、流水线构建、模型部署、监控和DevOps最佳实践目录什么是MLOps?为什么需要MLOps?MLOpsZoomcamp课程介绍
- 软件测试工程师学习笔记2 - 入门篇
拾肆0423
软件测试工程师学习笔记学习单元测试功能测试集成测试测试工具
软件测试工程师学习笔记-2入门必读2.测试设计1)目标2)知识点1.等价类划分--解决穷举2.边界值分析法--解决边界问题3.判定表法--解决多条件依赖关系问题入门必读基础入门目标五天结束,能独立完成功能测试过程。2.测试设计40%占比1)目标能对穷举场景设计测试点能对限定边界规则设计测试点能对多条件依赖关系进行设计测试点能对项目业务进行设计测试点2)知识点测试方法及对应场景1.等价类划分–解决穷
- python有限元传热求解_用python实现简单的有限元方法(一)
weixin_39545102
python有限元传热求解
华中师范大学hahakity有限元算法(FiniteElementMethod,简称FEM)是一种非常流行的求解偏微分方程的数值算法。有限元被广泛应用于结构受力分析、复杂边界的麦克斯韦方程求解以及热传导等问题。这一节介绍有限元方法的基本原理,以及如何用Python从头实现一个有限元算法,数值求解麦克斯韦方程。学习内容筑基:加权残差法(WeightedResidualMethod)心法:有限元与有限
- AI生成内容带来的核心挑战引发人机共治的必要提前
临水逸
人工智能
一、AI生成内容带来的核心挑战信息真实性危机斯坦福研究显示,AI生成虚假信息的速度是人类创作的6倍,如近期AI伪造的"拜登紧急状态"语音导致金融市场波动医疗领域已出现AI生成的伪科学内容,某健康论坛中23%的"患者经验分享"被证实为AI虚构数据质量劣化Google索引数据显示,2023年新网页中38%为AI生成,其中重复率高达57%学术领域发现,arXiv预印本平台AI代写论文占比已达12%,引发
- 论文阅读笔记1——DARTS:Differentiable Architecture Search可微分架构搜索(一)(论文翻译学习)
fuhao7i
论文阅读笔记深度学习人工智能机器学习算法计算机视觉
DARTS:DifferentiableArchitectureSearch可微分架构搜索(一)DARTS:DifferentiableArchitectureSearch(一)ABSTRACT摘要1.INTRODUCTION介绍2.可微的结构搜索加油加油!如果你感觉你现在很累,那么恭喜你,你现在正在走上坡路!让我们一起加油!欢迎关注我的讲解视频,让我们一起学习:Bilibili主页:https:
- 计算机毕业设计(附源码)python学习互助平台网站
杰记计算机程序源码
python学习django
项目运行环境配置:Pychram社区版+python3.7.7+Mysql5.7+HBuilderX+listpip+Navicat11+Django+nodejs。项目技术:django+python+Vue等等组成,B/S模式+pychram管理等等。环境需要1.运行环境:最好是python3.7.7,我们在这个版本上开发的。其他版本理论上也可以。2.pycharm环境:pycharm都可以。
- 学习笔记——蓝桥杯单片机基础------P2=(P2 & 0x1f) | 0x80...
Born_toward
蓝桥杯学习笔记蓝桥杯c语言单片机
目录一、简述二、相关知识介绍2.1二进制转换2.2转换方法三、举一反三3.1P2=(P2&0x1f)|0xa03.2P2=(P2&0x1f)|0xc03.3P2=(P2&0x1f)|0xe0一、简述在蓝桥杯单片机锁存器控制IO口编写代码时会用到它,可以优化代码。这是一个简单的二进制转换和运用到数电基础的“&”和“|”,即与和或。二、相关知识介绍2.1二进制转换在8051单片机中,初始P2的各个引脚
- 机器学习的三个步骤-ChatGPT4o作答
部分分式
机器学习人工智能
机器学习的三个步骤分别是:设置范围、设置标准、达成目标。这三个步骤是任何机器学习项目的基础框架,它们为模型的选择、优化和评估提供了清晰的指导。让我们深入探讨这三个步骤的具体内容。1.设置范围(DefiningtheScope)设置范围是机器学习项目中的第一步,它涉及到明确问题的类型和目标,选择合适的算法和模型结构。这个阶段的目标是确定适合当前任务的机器学习方法。关键内容:问题类型:监督学习(Sup
- 快速入门——Vue组件化开发
ONEPEICE-ing
vue.js前端javascript
学习自哔哩哔哩上的“刘老师教编程”,具体学习的网站为:9.Vue组件化开发_哔哩哔哩_bilibili,以下是看课后做的笔记,仅供参考。第一节NPM使用NPM是一个NodeJS包管理和分发工具第二节VueCLI使用第三节组件化开发
- Android社招面经分享!2021华为Android高级面试题及答案,附相关架构及资料
Andorid实习僧
程序员面试android程序人生
反思昨晚去北京大望路阿里面试,产生了严重的挫败感,羞愧难当.比不得从大学就有目标有理想,一直在为目标努力学习技术的同学,在大学唯一能拿得出手的就是参加了电子设计大赛,学了点嵌入式的知识.毕业后开始做android,说得好听点叫做项目,实际上就是搬代码,真正记到脑子里的有多少呢?从百度Google搬到自己的代码里,同一个问题要遇到好几次才能记住,很多问题搬完了还不知道为什么这么做.ReactNati
- 【Flask学习笔记:八】Flask 中的 cookie、session
Mr_Zhang2
Flaskpythonflask
目录: 【Flask学习笔记:一】开发环境部署 【Flask学习笔记:二】Flask入门基础知识 【Flask学习笔记:三】Flask中的request、response 【Flask学习笔记:四】Flask应用和请求上下文 【Flask学习笔记:五】Jinja2模板引擎 【Flask学习笔记:六】Flask蓝图 【Flask学习笔记:七】Flask-WTF处理表单 【Flask学
- Go爬虫学习笔记_go爬虫的知识储备
2401_86372470
golang爬虫学习
接口空接口定义、声明实现调用组合断言动态类型v.(type)比较并发协程通道声明、初始化读写关闭作为参数作为返回值单方向的通道,用于只读和只写场景select,随机执行context协程优雅退出级联退出原子锁:atomic互斥锁读写锁:适合多读少写场景。sync.Once、sync.Cond、sync.WaitGroup项目组织依赖管理:gomod组合工具与库编辑测试:编译部署:调试分析工具:代码
- Python 框架学习 Django篇 (六) 数据表关联_django orm 的 __ 链表,使用什么链接方式
2401_86372470
python学习django
表之间以对多的关系就是数据库中的“外键”,下面我们举个例子,比如一个医药系统中肯定会有客户的信息吧,我们先定义一个客户的基本信息(客户名称、联系电话、居住地址)viDjango_demo/paas/models.pyclassCustomer(models.Model):#客户名称name=models.CharField(max_length=200)#联系电话phonenumber=model
- AGI框架探索
另一只又死又活的猫
开发十年,就只剩下这套Java开发体系了>>>随着对机器学习领域的深入探索,我渐渐迷上了AGI通用人工智能。所以,闲暇时就对AGI框架进行了深入的了解,看看哪些AGI框架与个人的理念相符,方便做进一步的研究之用。朋友给我分享了一篇收集和汇总AGI技术的文章,正好,我就以此为索引,对里面的每一个框架进行了考察:50个杀手级人工智能项目:https://mp.weixin.qq.com/s/qafBW
- 焱老师带你学习MYSQL系列 第一篇 (MYSQL 整体架构)
weixin_44669461
MYSQLmysql学习架构
相关系列链接焱老师带你学习MYSQL系列第六篇(MYSQL是如何实现锁的)焱老师带你学习MYSQL系列第五篇(MYSQL事务隔离级别是如何实现的)焱老师带你学习MYSQL系列第四篇(MYSQL优化器详解)焱老师带你学习MYSQL系列第三篇(MYSQL单表访问方法)焱老师带你学习MYSQL系列第二篇(MYSQL数据结构)焱老师带你学习MYSQL系列第一篇(MYSQL整体架构)前记我很多年前曾经面试各
- Python入门教程丨3.5 正则表达式
凌小添
Python教程python正则表达式mysql
今天我们来学习Python里超实用的字符串匹配和正则表达式。这是处理文本数据的神器,无论是爬虫、数据清洗还是文本分析,都离不开它,我们从基础语法讲起,再到实战场景,深入体会正则的妙用。1.re库正则表达式(RegularExpression,简称regex或regexp)是一种用来匹配字符串的强大工具。它由一串字符和特殊符号组成,用于描述或匹配一系列符合某种模式的字符串。正则表达式广泛应用于文本搜
- 联邦学习与边缘模型优化赋能医疗诊断新路径
智能计算研究中心
其他
内容概要在医疗诊断智能化进程中,数据隐私保护与模型效能提升的双重需求催生出技术创新范式。联邦学习框架通过分布式模型训练机制,有效破解医疗机构间的数据壁垒,使跨机构的医学影像、病理数据在不离开本地服务器的前提下完成知识共享。与此同时,边缘计算节点部署将模型推理能力延伸至诊疗终端,CT影像实时分析响应时间缩短62%,显著提升急诊场景下的决策效率。建议医疗机构在部署联邦学习系统时,优先采用差分隐私与同态
- RTX 3090图形处理巅峰性能解析
智能计算研究中心
其他
内容概要作为NVIDIA面向专业创作者与发烧级玩家的旗舰产品,RTX3090重新定义了图形处理的性能边界。本文将以Ampere架构的技术演进为切入点,系统性解构该显卡在显存配置、运算单元协作及图像处理技术方面的创新设计。通过对比测试数据与工程原理分析,重点探讨24GBGDDR6X显存在8K分辨率场景下的带宽利用率,以及10496个CUDA核心在光线追踪与深度学习超采样(DLSS)任务中的动态负载分
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh
[email protected]
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_