数据结构与算法之美学习笔记:18 | 散列表(上):Word文档中的单词拼写检查功能是如何实现的?

目录

  • 前言
  • 散列思想
  • 散列函数
  • 散列冲突
  • 解答开篇

前言

数据结构与算法之美学习笔记:18 | 散列表(上):Word文档中的单词拼写检查功能是如何实现的?_第1张图片
本节课程思维导图:
数据结构与算法之美学习笔记:18 | 散列表(上):Word文档中的单词拼写检查功能是如何实现的?_第2张图片
Word 的单词拼写检查功能,虽然很小但却非常实用。你有没有想过,这个功能是如何实现的呢?其实啊,一点儿都不难。只要你学完今天的内容,散列表(Hash Table)。你就能像微软 Office 的工程师一样,轻松实现这个功能。

散列思想

散列表的英文叫“Hash Table”,我们平时也叫它“哈希表”或者“Hash 表”。你一定也经常听过它,但是你是不是真的理解这种数据结构呢?
散列表用的是数组支持按照下标随机访问数据的特性,所以散列表其实就是数组的一种扩展,由数组演化而来。可以说,如果没有数组,就没有散列表。
我用一个例子来解释一下。假如我们有 89 名选手参加学校运动会。为了方便记录成绩,每个选手胸前都会贴上自己的参赛号码。假设校长说,参赛编号不能设置得这么简单,要加上年级、班级这些更详细的信息,所以我们把编号的规则稍微修改了一下,用 6 位数字来表示。比如 051167,其中,前两位 05 表示年级,中间两位 11 表示班级,最后两位还是原来的编号 1 到 89。这个时候我们该如何存储选手信息,才能够支持通过编号来快速查找选手信息呢?
我们可以把这 89 名选手的信息放在数组里。尽管我们不能直接把编号作为数组下标,但我们可以截取参赛编号的后两位作为数组下标,来存取选手信息数据,编号为01 的选手,我们放到数组中下标为 1 的位置;编号为 02 的选手,我们放到数组中下标为 2 的位置。以此类推,编号为 k 的选手放到数组中下标为 k 的位置。

这就是典型的散列思想。其中,参赛选手的编号我们叫做键(key)或者关键字。我们用它来标识一个选手。我们把参赛编号转化为数组下标的映射方法就叫作散列函数(或“Hash 函数”“哈希函数”),而散列函数计算得到的值就叫作散列值(或“Hash 值”“哈希值”)。
数据结构与算法之美学习笔记:18 | 散列表(上):Word文档中的单词拼写检查功能是如何实现的?_第3张图片
通过这个例子,我们可以总结出这样的规律:散列表用的就是数组支持按照下标随机访问的时候,时间复杂度是 O(1) 的特性。我们通过散列函数把元素的键值映射为下标,然后将数据存储在数组中对应下标的位置。当我们按照键值查询元素时,我们用同样的散列函数,将键值转化数组下标,从对应的数组下标的位置取数据。

散列函数

散列函数,顾名思义,它是一个函数。我们可以把它定义成 hash(key),其中 key 表示元素的键值,hash(key) 的值表示经过散列函数计算得到的散列值。

int hash(String key) {
  // 获取后两位字符
  string lastTwoChars = key.substr(length-2, length);
  // 将后两位字符转换为整数
  int hashValue = convert lastTwoChas to int-type;
  return hashValue;
}

刚刚的散列函数比较简单,也比较容易想到。但是,如果参赛选手的编号是随机生成的 6 位数字,又或者用的是 a 到 z 之间的字符串,该如何构造散列函数呢?我总结了三点散列函数设计的基本要求:

  1. 散列函数计算得到的散列值是一个非负整数;
  2. 如果 key1 = key2,那 hash(key1) == hash(key2);
  3. 如果 key1 ≠ key2,那 hash(key1) ≠ hash(key2)。
    第一点和第二点理解起来比较简单,第三点理解起来可能会有问题。这个要求看起来合情合理,但是在真实的情况下,要想找到一个不同的 key 对应的散列值都不一样的散列函数,几乎是不可能的。即便像业界著名的MD5、SHA、CRC等哈希算法,也无法完全避免这种散列冲突。

散列冲突

再好的散列函数也无法避免散列冲突。那究竟该如何解决散列冲突问题呢?我们常用的散列冲突解决方法有两类,开放寻址法(open addressing)和链表法(chaining)。

  1. 开放寻址法
    开放寻址法的核心思想是,如果出现了散列冲突,我们就重新探测一个空闲位置,将其插入。那如何重新探测新的位置呢?我先讲一个比较简单的探测方法,线性探测(Linear Probing)。当我们往散列表中插入数据时,如果某个数据经过散列函数散列之后,存储位置已经被占用了,我们就从当前位置开始,依次往后查找,看是否有空闲位置,直到找到为止。
    数据结构与算法之美学习笔记:18 | 散列表(上):Word文档中的单词拼写检查功能是如何实现的?_第4张图片
    从图中可以看出,散列表的大小为 10,在元素 x 插入散列表之前,已经 6 个元素插入到散列表中。x 经过 Hash 算法之后,被散列到位置下标为 7 的位置,但是这个位置已经有数据了,所以就产生了冲突。于是我们就顺序地往后一个一个找,看有没有空闲的位置,遍历到尾部都没有找到空闲的位置,于是我们再从表头开始找,直到找到空闲位置 2,于是将其插入到这个位置。
    我们通过散列函数求出要查找元素的键值对应的散列值,然后比较数组中下标为散列值的元素和要查找的元素。如果相等,则说明就是我们要找的元素;否则就顺序往后依次查找。如果遍历到数组中的空闲位置,还没有找到,就说明要查找的元素并没有在散列表中。
    数据结构与算法之美学习笔记:18 | 散列表(上):Word文档中的单词拼写检查功能是如何实现的?_第5张图片
    散列表跟数组一样,不仅支持插入、查找操作,还支持删除操作。对于使用线性探测法解决冲突的散列表,删除操作稍微有些特别。我们不能单纯地把要删除的元素设置为空。我们可以将删除的元素,特殊标记为 deleted。当线性探测查找的时候,遇到标记为 deleted 的空间,并不是停下来,而是继续往下探测。
    数据结构与算法之美学习笔记:18 | 散列表(上):Word文档中的单词拼写检查功能是如何实现的?_第6张图片
    你可能已经发现了,线性探测法其实存在很大问题。当散列表中插入的数据越来越多时,散列冲突发生的可能性就会越来越大,空闲位置会越来越少,线性探测的时间就会越来越久。
    对于开放寻址冲突解决方法,除了线性探测方法之外,还有另外两种比较经典的探测方法,二次探测(Quadratic probing)和双重散列(Double hashing)。
    所谓二次探测,跟线性探测很像,线性探测每次探测的步长是 1,那它探测的下标序列就是 hash(key)+0,hash(key)+1,hash(key)+2……而二次探测探测的步长就变成了原来的“二次方”,也就是说,它探测的下标序列就是 hash(key)+0,hash(key)+12,hash(key)+22……
    所谓双重散列,意思就是不仅要使用一个散列函数。我们使用一组散列函数 hash1(key),hash2(key),hash3(key)……我们先用第一个散列函数,如果计算得到的存储位置已经被占用,再用第二个散列函数,依次类推,直到找到空闲的存储位置。

不管采用哪种探测方法,当散列表中空闲位置不多的时候,散列冲突的概率就会大大提高。为了尽可能保证散列表的操作效率,一般情况下,我们会尽可能保证散列表中有一定比例的空闲槽位。我们用装载因子(load factor)来表示空位的多少。装载因子越大,说明空闲位置越少,冲突越多,散列表的性能会下降。
2. 链表法
链表法是一种更加常用的散列冲突解决办法,相比开放寻址法,它要简单很多。我们来看这个图,在散列表中,每个“桶(bucket)”或者“槽(slot)”会对应一条链表,所有散列值相同的元素我们都放到相同槽位对应的链表中。
数据结构与算法之美学习笔记:18 | 散列表(上):Word文档中的单词拼写检查功能是如何实现的?_第7张图片
插入的时候,我们只需要通过散列函数计算出对应的散列槽位,将其插入到对应链表中即可,所以插入的时间复杂度是 O(1)。当查找、删除一个元素时,我们同样通过散列函数计算出对应的槽,然后遍历链表查找或者删除。那查找或删除操作的时间复杂度是多少呢?实际上,这两个操作的时间复杂度跟链表的长度 k 成正比,也就是 O(k)。对于散列比较均匀的散列函数来说,理论上讲,k=n/m,其中 n 表示散列中数据的个数,m 表示散列表中“槽”的个数。

解答开篇

Word 文档中单词拼写检查功能是如何实现的?
常用的英文单词有 20 万个左右,假设单词的平均长度是 10 个字母,平均一个单词占用 10 个字节的内存空间,那 20 万英文单词大约占 2MB 的存储空间,就算放大 10 倍也就是 20MB。对于现在的计算机来说,这个大小完全可以放在内存里面。所以我们可以用散列表来存储整个英文单词词典。当用户输入某个英文单词时,我们拿用户输入的单词去散列表中查找。如果查到,则说明拼写正确;如果没有查到,则说明拼写可能有误,给予提示。借助散列表这种数据结构,我们就可以轻松实现快速判断是否存在拼写错误。

你可能感兴趣的:(数据结构与算法之美学习笔记,数据结构,算法)