【图论】最小生成树(python和cpp)

文章目录

  • 一、声明
  • 二、简介
  • 三、代码
    • C++代码
    • Python代码

一、声明

  • 本帖持续更新中
  • 如有纰漏望指正!

二、简介

(a)点云建立的k近邻图 (b)k近邻图上建立的最小生成树
【图论】最小生成树(python和cpp)_第1张图片 【图论】最小生成树(python和cpp)_第2张图片

最小生成树 (Minimum Spanning Tree,简称 MST) 是一种在带权无向图中的树,它连接了图中所有节点并且总权重最小。在最小生成树中,任意两个节点之间有且仅有一条路径,同时这些路径的权重之和最小。
最小生成树的应用场景非常广泛。以下是一些常见的应用场景:

  • 网络设计:在计算机网络或通信网络中,最小生成树可以用来构建最优的网络拓扑结构,以便实现高效的数据传输和通信。
  • 物流规划:在物流管理中,最小生成树可以用来确定最短路径,从而有效地规划货物的运输路线,降低物流成本。
  • 电力传输:在电力系统中,最小生成树可以用于确定电力输电线路的布置,确保电力从发电站到各个用户点的传输成本最小。
  • 集群分析:在数据挖掘和机器学习中,最小生成树可以用于聚类分析,帮助发现数据点之间的相关性和相似性。
  • 电路板设计:在电路板设计中,最小生成树可以用来确定电路中的连接线路,以便最小化电路板的制造成本。

最小生成树算法有多种,其中最著名且常用的算法是普里姆算法(Prim’s algorithm)和克鲁斯卡尔算法(Kruskal’s algorithm),它们可以高效地找到最小生成树。

三、代码

C++代码

#include 
#include 
#include 
#include 

int main() {
    // Define the graph using adjacency_list
    typedef boost::adjacency_list<boost::vecS, boost::vecS, boost::undirectedS,
        boost::no_property, boost::property<boost::edge_weight_t, int>> Graph;

    typedef boost::graph_traits<Graph>::edge_descriptor Edge;
    typedef boost::property_map<Graph, boost::edge_weight_t>::type WeightMap;

    // Create a graph object
    Graph g;

    // Add edges to the graph
    add_edge(0, 1, 2, g);
    add_edge(1, 2, 3, g);
    add_edge(0, 3, 1, g);
    // ... Add other edges as needed

    // Vector to store the resulting MST edges
    std::vector<Edge> spanning_tree;

    // Compute the minimum spanning tree using Kruskal's algorithm
    boost::kruskal_minimum_spanning_tree(g, std::back_inserter(spanning_tree));

    // Print the edges in the MST
    for (std::vector<Edge>::iterator ei = spanning_tree.begin(); ei != spanning_tree.end(); ++ei) {
        std::cout << source(*ei, g) << " <--> " << target(*ei, g)
                  << " with weight of " << get(boost::edge_weight, g, *ei) << std::endl;
    }

    return 0;
}

Python代码

import open3d as o3d
import numpy as np
import networkx as nx
from scipy.spatial import KDTree
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

def create_knn_graph(point_cloud, k):
    # Convert Open3D point cloud to numpy array
    points = np.asarray(point_cloud.points)
    
    # Build a KDTree for efficient nearest neighbor search
    tree = KDTree(points)
    
    # Create a graph
    G = nx.Graph()
    
    # Add nodes and edges based on k nearest neighbors
    for i in range(len(points)):
        distances, indices = tree.query(points[i], k=k+1)  # k+1 because the point itself is included
        for j in range(1, k+1):  # Skip the first one (itself)
            G.add_edge(i, indices[j], weight=distances[j])

    return G

def find_mst(graph):
    # Compute the minimum spanning tree
    return nx.minimum_spanning_tree(graph)

def plot_3d_graph(graph, pos_3d):
    # Create a 3D plot
    fig = plt.figure(figsize=(8, 6))
    ax = fig.add_subplot(111, projection='3d')

    # Extract the x, y, z coordinates of each node
    xs, ys, zs = zip(*[pos_3d[node] for node in graph.nodes()])

    # Plot the nodes
    ax.scatter(xs, ys, zs)

    # Plot the edges
    for edge in graph.edges():
        x_coords, y_coords, z_coords = zip(*(pos_3d[edge[0]], pos_3d[edge[1]]))
        ax.plot(x_coords, y_coords, z_coords, color='blue')

    # Set labels and show plot
    ax.set_xlabel('X axis')
    ax.set_ylabel('Y axis')
    ax.set_zlabel('Z axis')
    # plt.show()
    plt.axis("equal")
    plt.savefig("1.png")

# Load point cloud
pcd = o3d.io.read_point_cloud("1.ply") # Adjust the file path

# Create the kNN graph (choose your k)
k = 5  # For example, k=5
knn_graph = create_knn_graph(pcd, k)

# Find the minimum spanning tree
mst = find_mst(knn_graph)

# Extract positions from the 3D point cloud
pos_3d = {i: pos for i, pos in enumerate(np.asarray(pcd.points))}

# Plot the 3D graph of the minimum spanning tree
plot_3d_graph(mst, pos_3d)

你可能感兴趣的:(数学理论,图论,python,c++)