洛谷 P1260 工程规划(差分约束)

题目描述

造一幢大楼是一项艰巨的工程,它是由n个子任务构成的,给它们分别编号1,2,…,n(5≤n≤1000)。由于对一些任务的起始条件有着严格的限制,所以每个任务的起始时间T1,T2,…,Tn并不是很容易确定的(但这些起始时间都是非负整数,因为它们必须在整个工程开始后启动)。例如:挖掘完成后,紧接着就要打地基;但是混凝土浇筑完成后,却要等待一段时间再去掉模板。

这种要求就可以用M(5≤m≤5000)个不等式表示,不等式形如Ti-Tj≤b代表i和j的起始时间必须满足的条件。每个不等式的右边都是一个常数b,这些常数可能不相同,但是它们都在区间(-100,100)内。

你的任务就是写一个程序,给定像上面那样的不等式,找出一种可能的起始时间序列T1,T2,…,Tn,或者判断问题无解。对于有解的情况,要使最早进行的那个任务和整个工程的起始时间相同,也就是说,T1,T2,…,Tn中至少有一个为0。

输入输出格式

输入格式:

 

第一行是用空格隔开的两个正整数n和m,下面的m行每行有三个用空格隔开的整数i,j,b对应着不等式Ti-Tj≤b。

 

输出格式:

 

如果有可行的方案,那么输出N行,每行都有一个非负整数且至少有一个为0,按顺序表示每个任务的起始时间。如果没有可行的方案,就输出信息“NO SOLUTION”。

 

输入输出样例

输入样例#1: 
5 8
1 2 0
1 5 -1
2 5 1
3 1 5
4 1 4
4 3 -1
5 3 -1
5 4 -3
输出样例#1: 
0
2
5
4
1
输入样例#2: 
5 5
1 2 -3
1 5 -1
2 5 -1
5 1 -5
4 1 4
输出样例#2: 
NO SOLUTION

解:这道题目我们首先需要判负环,如果中间存在负环,那么我们就输出"NO SOLUTION";

  那么接下来我们可以建一个“超级原点”,使它连接所有的点,这样即使原本多个联通块,我们也可以一次搜完所有的联通块了。

  因为题目中要求至少一个0,那么我们只需要对每个点的距离减去最小距离的点的值,就能保证至少有一个0(就是最小距离的点)了。

#include
using namespace std;
#define man 5050
template 
inline void read(T &x)
{	x=0;bool f=0;char ch=getchar();
	while(!isdigit(ch)){	f=(ch==45);ch=getchar();}
	while(isdigit(ch)) {	x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}
	x=f?(~x+1):x;
	}
#define ll long long
/*TEST*/
int n,m;
/*EDGE*/
int degree[man],head[man<<2],num=0;
struct edge
{	int from,next,to,dis;}e[man<<2];
inline void add(int from,int to,int dis)
{	e[++num].next=head[from];
	e[num].to=to;
	e[num].dis=dis;
	e[num].from=from;
	head[from]=num;
	}
/*TOPSORT*/
int dis[man];
bool vis[man],flag=0;
int cnt[man]={0};
inline int spfa(int s)
{

    queueq;
    q.push(s);dis[s]=0;vis[s]=1;
    do
    {
        int u=q.front();q.pop();
        vis[u]=0;
        for(int i=head[u];i;i=e[i].next)
        {
            ll to=e[i].to;
            if(dis[to]>dis[u]+e[i].dis)
            {	dis[to]=dis[u]+e[i].dis;
                if(!vis[to])
                {
                    q.push(to);
                    vis[to]=1;
                    cnt[to]++;
                    }
                if(cnt[to]>n) return 1;
                }			
            }
        }while(q.size());
    return 0;
    }
int main()
{	read(n);read(m);
	for(int i=1;i<=m;i++)
	{	int x,y,z;
		read(x);read(y);read(z);
		add(y,x,z);
		}
	for(int i=1;i<=n;i++)
	    add(0,i,0);
	memset(vis,0,sizeof(vis));
    memset(dis,0x7f,sizeof(dis));
	if(spfa(0)==1) {printf("NO SOLUTION\n");return 0;}
	int minn=2000000000;
	for(int i=1;i<=n;i++)
	    minn=min(minn,dis[i]);
	for(int i=1;i<=n;i++)
	    printf("%d\n",dis[i]-minn);
	return 0;
	}

  

转载于:https://www.cnblogs.com/Slager-Z/p/7800866.html

你可能感兴趣的:(洛谷 P1260 工程规划(差分约束))