原文地址:http://blog.csdn.net/xieyuooo/article/details/17318131
AQS的全称为(AbstractQueuedSynchronizer),这个类也是在java.util.concurrent.locks下面。这个类似乎很不容易看懂,因为它仅仅是提供了一系列公共的方法,让子类来调用。那么要理解意思,就得从子类下手,反过来看才容易看懂。如下图所示:
图 5-15 AQS的子类实现
这么多类,我们看那一个?刚刚提到过锁(Lock),我们就从锁开始吧。这里就先以ReentrantLock排它锁为例开始展开讲解如何利用AQS的,然后再简单介绍读写锁的要点(读写锁本身的实现十分复杂,要完全说清楚需要大量的篇幅来说明)。
首先来看看ReentrantLock的构造方法,它的构造方法有两个,如下图所示:
图 5-16 排它锁的构造方法
很显然,对象中有一个属性叫sync,有两种不同的实现类,默认是“NonfairSync”来实现,而另一个“FairSync”它们都是排它锁的内部类,不论用那一个都能实现排它锁,只是内部可能有点原理上的区别。先以“NonfairSync”类为例,它的lock()方法是如何实现的呢?
图 5-17 排它锁的lock方法
lock()方法先通过CAS尝试将状态从0修改为1。若直接修改成功,前提条件自然是锁的状态为0,则直接将线程的OWNER修改为当前线程,这是一种理想情况,如果并发粒度设置适当也是一种乐观情况。
若上一个动作未成功,则会间接调用了acquire(1)来继续操作,这个acquire(int)方法就是在AbstractQueuedSynchronizer当中了。这个方法表面上看起来简单,但真实情况比较难以看懂,因为第一次看这段代码可能不知道它要做什么!不急,胖哥一步一步来分解。
首先看tryAcquire(arg)这里的调用(当然传入的参数是1),在默认的“NonfairSync”实现类中,会这样来实现:
图 5-18tryAcquire的代码
妈呀,这代码好费劲,胖哥第一回看也是觉得这样,细心看看也不是想象当中那么难:
○ 首先获取这个锁的状态,如果状态为0,则尝试设置状态为传入的参数(这里就是1),若设置成功就代表自己获取到了锁,返回true了。状态为0设置1的动作在外部就有做过一次,内部再一次做只是提升概率,而且这样的操作相对锁来讲不占开销。 ○ 如果状态不是0,则判定当前线程是否为排它锁的Owner,如果是Owner则尝试将状态增加acquires(也就是增加1),如果这个状态值越界,则会抛出异常提示,若没有越界,将状态设置进去后返回true(实现了类似于偏向的功能,可重入,但是无需进一步征用)。 ○ 如果状态不是0,且自身不是owner,则返回false。 |
回到图 5-17中对tryAcquire()的调用判定中是通过if(!tryAcquire())作为第1个条件的,如果返回true,则判定就不会成立了,自然后面的acquireQueued动作就不会再执行了,如果发生这样的情况是最理想的。
无论多么乐观,征用是必然存在的,如果征用存在则owner自然不会是自己,tryAcquire()方法会返回false,接着就会再调用方法:acquireQueued(addWaiter(Node.EXCLUSIVE), arg)做相关的操作。
这个方法的调用的代码更不好懂,需要从里往外看,这里的Node.EXCLUSIVE是节点的类型,看名称应该清楚是排它类型的意思。接着调用addWaiter()来增加一个排它锁类型的节点,这个addWaiter()的代码是这样写的:
图 5-19addWaiter的代码
这里创建了一个Node的对象,将当前线程和传入的Node.EXCLUSIVE传入,也就是说Node节点理论上包含了这两项信息。代码中的tail是AQS的一个属性,刚开始的时候肯定是为null,也就是不会进入第一层if判定的区域,而直接会进入enq(node)的代码,那么直接来看看enq(node)的代码。
看到了tail就应该猜到了AQS是链表吧,没错,而且它还应该有一个head引用来指向链表的头节点,AQS在初始化的时候head、tail都是null,在运行时来回移动。此时,我们最少至少知道AQS是一个基于状态(state)的链表管理方式。 |
图 5-20 enq(Node)的源码
这段代码就是链表的操作,某些同学可能很牛,一下就看懂了,某些同学一扫而过觉得知道大概就可以了,某些同学可能会莫不着头脑。胖哥为了给第三类同学来“开开荤”,简单讲解下这个代码。
首先这个是一个死循环,而且本身没有锁,因此可以有多个线程进来,假如某个线程进入方法,此时head、tail都是null,自然会进入if(t == null)所在的代码区域,这部分代码会创建一个Node出来名字叫h,这个Node没有像开始那样给予类型和线程,很明显是一个空的Node对象,而传入的Node对象首先被它的next引用所指向,此时传入的node和某一个线程创建的h对象如下图所示。
图 5-21 临时的h对象创建后的与传入的Node指向关系
刚才我们很理想的认为只有一个线程会出现这种情况,如果有多个线程并发进入这个if判定区域,可能就会同时存在多个这样的数据结构,在各自形成数据结构后,多个线程都会去做compareAndSetHead(h)的动作,也就是尝试将这个临时h节点设置为head,显然并发时只有一个线程会成功,因此成功的那个线程会执行tail = node的操作,整个AQS的链表就成为:
有一个线程会成功修改head和tail的值,其它的线程会继续循环,再次循环就不会进入if (t == null)的逻辑了,而会进入else语句的逻辑中。
在else语句所在的逻辑中,第一步是node.prev = t,这个t就是tail的临时值,也就是首先让尝试写入的node节点的prev指针指向原来的结束节点,然后尝试通过CAS替换掉AQS中的tail的内容为当前线程的Node,无论有多少个线程并发到这里,依然只会有一个能成功,成功者执行t.next = node,也就是让原先的tail节点的next引用指向现在的node,现在的node已经成为了最新的结束节点,不成功者则会继续循环。
简单使用图解的方式来说明,3个步骤如下所示,如下图所示:
插入多个节点的时候,就以此类推了哦,总之节点都是在链表尾部写入的,而且是线程安全的。
知道了AQS大致的写入是一种双向链表的插入操作,但插入链表节点对锁有何用途呢,我们还得退回到前面图 5-19的代码中addWaiter方法最终返回了要写入的node节点, 再回退到图5-17中所在的代码中需要将这个返回的node节点作为acquireQueued方法入口参数,并传入另一个参数(依然是1),看看它里面到底做了些什么?请看下图:
图 5-24 acquireQueued的方法内容
这里也是一个死循环,除非进入if(p == head &&tryAcquire(arg))这个判定条件,而p为node.predcessor()得到,这个方法返回node节点的前一个节点,也就是说只有当前一个节点是head的时候,进一步尝试通过tryAcquire(arg)来征用才有机会成功。tryAcquire(arg)这个方法我们前面介绍过,成立的条件为:锁的状态为0,且通过CAS尝试设置状态成功或线程的持有者本身是当前线程才会返回true,我们现在来详细拆分这部分代码。
○如果这个条件成功后,发生的几个动作包含:
(1)首先调用setHead(Node)的操作,这个操作内部会将传入的node节点作为AQS的head所指向的节点。线程属性设置为空(因为现在已经获取到锁,不再需要记录下这个节点所对应的线程了),再将这个节点的perv引用赋值为null。
(2)进一步将的前一个节点的next引用赋值为null。
在进行了这样的修改后,队列的结构就变成了以下这种情况了,通过这样的方式,就可以让执行完的节点释放掉内存区域,而不是无限制增长队列,也就真正形成FIFO了:
○如果这个判定条件失败
会首先判定:“shouldParkAfterFailedAcquire(p , node)”,这个方法内部会判定前一个节点的状态是否为:“Node.SIGNAL”,若是则返回true,若不是都会返回false,不过会再做一些操作:判定节点的状态是否大于0,若大于0则认为被“CANCELLED”掉了(我们没有说明几个状态的值,不过大于0的只可能被CANCELLED的状态),因此会从前一个节点开始逐步循环找到一个没有被“CANCELLED”节点,然后与这个节点的next、prev的引用相互指向;如果前一个节点的状态不是大于0的,则通过CAS尝试将状态修改为“Node.SIGNAL”,自然的如果下一轮循环的时候会返回值应该会返回true。
如果这个方法返回了true,则会执行:“parkAndCheckInterrupt()”方法,它是通过LockSupport.park(this)将当前线程挂起到WATING状态,它需要等待一个中断、unpark方法来唤醒它,通过这样一种FIFO的机制的等待,来实现了Lock的操作。
相应的,可以自己看看FairSync实现类的lock方法,其实区别不大,有些细节上的区别可能会决定某些特定场景的需求,你也可以自己按照这样的思路去实现一个自定义的锁。 |
接下来简单看看unlock()解除锁的方式,如果获取到了锁不释放,那自然就成了死锁,所以必须要释放,来看看它内部是如何释放的。同样从排它锁(ReentrantLock)中的unlock()方法开始,请先看下面的代码截图:
图 5-26 unlock方法间接调用AQS的release(1)来完成
通过tryRelease(int)方法进行了某种判定,若它成立则会将head传入到unparkSuccessor(Node)方法中并返回true,否则返回false。首先来看看tryRelease(int)方法,如下图所示:
图 5-27tryRelease(1)方法
这个动作可以认为就是一个设置锁状态的操作,而且是将状态减掉传入的参数值(参数是1),如果结果状态为0,就将排它锁的Owner设置为null,以使得其它的线程有机会进行执行。
在排它锁中,加锁的时候状态会增加1(当然可以自己修改这个值),在解锁的时候减掉1,同一个锁,在可以重入后,可能会被叠加为2、3、4这些值,只有unlock()的次数与lock()的次数对应才会将Owner线程设置为空,而且也只有这种情况下才会返回true。
这一点大家写代码要注意了哦,如果是在循环体中lock()或故意使用两次以上的lock(),而最终只有一次unlock(),最终可能无法释放锁。在本书的src/chapter05/locks/目录下有相应的代码,大家可以自行测试的哦。 |
在方法unparkSuccessor(Node)中,就意味着真正要释放锁了,它传入的是head节点(head节点是已经执行完的节点,在后面阐述这个方法的body的时候都叫head节点),内部首先会发生的动作是获取head节点的next节点,如果获取到的节点不为空,则直接通过:“LockSupport.unpark()”方法来释放对应的被挂起的线程,这样一来将会有一个节点唤醒后继续进入图 5-24中的循环进一步尝试tryAcquire()方法来获取锁,但是也未必能完全获取到哦,因为此时也可能有一些外部的请求正好与之征用,而且还奇迹般的成功了,那这个线程的运气就有点悲剧了,不过通常乐观认为不会每一次都那么悲剧。
再看看共享锁,从前面的排它锁可以看得出来是用一个状态来标志锁的,而共享锁也不例外,但是Java不希望去定义两个状态,所以它与排它锁的第一个区别就是在锁的状态上,它用int来标志锁的状态,int有4个字节,它用高16位标志读锁(共享锁),低16位标志写锁(排它锁),高16位每次增加1相当于增加65536(通过1 << 16得到),自然的在这种读写锁中,读锁和写锁的个数都不能超过65535个(条件是每次增加1的,如果递增是跳跃的将会更少)。在计算读锁数量的时候将状态左移16位,而计算排它锁会与65535“按位求与”操作,如下图所示。
图 5-28 读写锁中的数量计算及限制
写锁的功能与“ReentrantLock”基本一致,唯一的会在tryAcquire操作的时候,判定状态的时候会更加复杂一点。
读锁也会写入队列,Node的类型被改为:“Node.SHARED”这种类型,lock()时候调用的是AQS的acquireShared(int)方法,进一步调用tryAcquireShared()操作里面只需要检测是否有排它锁,就可以尝试通过CAS修改锁的状态,如果没有修改成功,则会自旋这个动作。如果这个自旋的过程中检测到排它锁竞争成功,那么tryAcquireShared()会返回-1,从而会走如排它锁的Node类似的流程,可能也会被park住,等待排它锁相应的线程最终调用unpark()动作来唤醒。
这就是读写锁,不过共享锁里面也有多种机制,我们只是说了一种而已。在这种锁下面,读和写的操作本身是互斥的,但是读可以多个一起发生。这样的锁非常适合应用在“读多写少”的环境下,这样锁征用的粒度会大大降低,同时系统的瓶颈会减少,效率得到总体提升。
在本节中我们除了学习到AQS的内在,还应看到Java通过一个AQS队列解决了许多问题,这个是Java层面的队列模型,其实我们也可以利用许多队列模型来解决自己的问题,甚至于可以改写模型模型来满足自己的需求,在本章的5.6.1节中将会详细介绍。
关于Lock及AQS的一些补充: 1、 Lock的操作不仅仅局限于lock()/unlock(),因为这样线程可能进入WAITING状态,这个时候如果没有unpark()就没法唤醒它,可能会一直“睡”下去,可以尝试用tryLock()、tryLock(long , TimeUnit)来做一些尝试加锁或超时来满足某些特定场景的需要。例如有些时候发现尝试加锁无法加上,先释放已经成功对其它对象添加的锁,过一小会再来尝试,这样在某些场合下可以避免“死锁”哦。 2、 lockInterruptibly() 它允许抛出InterruptException异常,也就是当外部发起了中断操作,程序内部有可能会抛出这种异常,但是并不是绝对会抛出异常的,大家仔细看看代码便清楚了。 3、 newCondition()操作,是返回一个Condition的对象,Condition只是一个接口,它要求实现await()、awaitUninterruptibly()、awaitNanos(long)、await(long , TimeUnit)、awaitUntil(Date)、signal()、signalAll()方法,AbstractQueuedSynchronizer中有一个内部类叫做ConditionObject实现了这个接口,它也是一个类似于队列的实现,具体可以参考源码。大多数情况下可以直接使用,当然觉得自己比较牛逼的话也可以参考源码自己来实现。 4、 在AQS的Node中有每个Node自己的状态(waitStatus),我们这里归纳一下,分别包含: SIGNAL 从前面的代码状态转换可以看得出是前面有线程在运行,需要前面线程结束后,调用unpark()方法才能激活自己,值为:-1 CANCELLED 当AQS发起取消或fullyRelease()时,会是这个状态。值为1,也是几个状态中唯一一个大于0的状态,所以前面判定状态大于0就基本等价于是CANCELLED的意思。 CONDITION 线程基于Condition对象发生了等待,进入了相应的队列,自然也需要Condition对象来激活,值为-2。 PROPAGATE 读写锁中,当读锁最开始没有获取到操作权限,得到后会发起一个doReleaseShared()动作,内部也是一个循环,当判定后续的节点状态为0时,尝试通过CAS自旋方式将状态修改为这个状态,表示节点可以运行。 状态0 初始化状态,也代表正在尝试去获取临界资源的线程所对应的Node的状态。 |
博客上格式全部乱掉了,有点晕,不过书上格式比这个应该要清爽许多。