leetcode做题笔记1334. 阈值距离内邻居最少的城市

有 n 个城市,按从 0 到 n-1 编号。给你一个边数组 edges,其中 edges[i] = [fromi, toi, weighti] 代表 fromi 和 toi 两个城市之间的双向加权边,距离阈值是一个整数 distanceThreshold

返回能通过某些路径到达其他城市数目最少、且路径距离 最大 为 distanceThreshold 的城市。如果有多个这样的城市,则返回编号最大的城市。

注意,连接城市 i 和 j 的路径的距离等于沿该路径的所有边的权重之和。

示例 1:

leetcode做题笔记1334. 阈值距离内邻居最少的城市_第1张图片

输入:n = 4, edges = [[0,1,3],[1,2,1],[1,3,4],[2,3,1]], distanceThreshold = 4
输出:3
解释:城市分布图如上。
每个城市阈值距离 distanceThreshold = 4 内的邻居城市分别是:
城市 0 -> [城市 1, 城市 2] 
城市 1 -> [城市 0, 城市 2, 城市 3] 
城市 2 -> [城市 0, 城市 1, 城市 3] 
城市 3 -> [城市 1, 城市 2] 
城市 0 和 3 在阈值距离 4 以内都有 2 个邻居城市,但是我们必须返回城市 3,因为它的编号最大。

示例 2:

leetcode做题笔记1334. 阈值距离内邻居最少的城市_第2张图片

输入:n = 5, edges = [[0,1,2],[0,4,8],[1,2,3],[1,4,2],[2,3,1],[3,4,1]], distanceThreshold = 2
输出:0
解释:城市分布图如上。 
每个城市阈值距离 distanceThreshold = 2 内的邻居城市分别是:
城市 0 -> [城市 1] 
城市 1 -> [城市 0, 城市 4] 
城市 2 -> [城市 3, 城市 4] 
城市 3 -> [城市 2, 城市 4]
城市 4 -> [城市 1, 城市 2, 城市 3] 
城市 0 在阈值距离 2 以内只有 1 个邻居城市。

思路一:迪杰斯特拉算法

c++解法

class Solution {
public:
    int findTheCity(int n, vector>& edges, int distanceThreshold) {
        vector>a (n,vector(n,distanceThreshold+1));
        for(auto &eg:edges){
            a[eg[0]][eg[1]] = eg[2];
            a[eg[1]][eg[0]] = eg[2];
        }
        for(int i = 0;i<=n-1;i++){
            for(int j = 0;j<=n-1;j++){
                for(int k = 0;k<=n-1;k++){
                    if(j==k)a[j][k]=0;
                    else{
                        if(a[j][i]+a[i][k]

你可能感兴趣的:(图论,leetcode,笔记)