那么这里博主先安利一些干货满满的专栏了!
首先是博主的高质量博客的汇总,这个专栏里面的博客,都是博主最最用心写的一部分,干货满满,希望对大家有帮助。
代表信号电压或者电流的时间波形 s ( t ) s(t) s(t)
s ( t ) s(t) \quad s(t)
信号的能量,单位焦耳。
E = ∫ − ∞ ∞ s 2 ( t ) d t E = \int_{-\infty }^{\infty} s^2(t)\mathrm{d}t E=∫−∞∞s2(t)dt
如果这个数是一个正的有限值,则信号为能量信号。与此同时,能量信号的平均功率 P = 0 P=0 P=0。
平均功率定义如下。
P = lim T → ∞ ∫ − T / 2 T / 2 s 2 ( t ) d t P = \lim_{T \to \infty } \int_{-T/2}^{T/2}s^2(t)\mathrm{d}t P=T→∞lim∫−T/2T/2s2(t)dt
两种信号。
功率信号一般认为是周期的。(别管这么多,书上就是这样写的)
令一个周期信号 s ( t ) s(t) s(t)的周期为 T 0 T_0 T0,频谱函数可以定义成以下形式。
C n = C ( n f 0 ) = 1 T 0 ∫ − T 0 / 2 T 0 / 2 s ( t ) e − j 2 π n f 0 t d t f 0 = 1 / T 0 n 为整数 , − ∞ < n < ∞ C ( n f 0 ) 表示 C 是 n f 0 的函数,并简记为 C n C_n = C(nf_0) = \frac{1}{T_0}\int_{-T_0/2}^{T_0/2}s(t)e^{-j2\pi nf_0t}\mathrm{d}t \\ f_0 = 1/T_0 \\ n为整数, -\infty
傅立叶级数可以把 s ( t ) s(t) s(t)展开。
s ( t ) = ∑ n = − ∞ ∞ C n e j 2 π n t / T 0 s(t) = \sum_{n=-\infty}^{\infty} C_ne^{j2\pi nt/T_0} s(t)=n=−∞∑∞Cnej2πnt/T0
展开需要满足傅立叶级数的狄利克雷条件,一般信号是可以满足的。
当 n = 0 n=0 n=0的时候,是 s ( t ) s(t) s(t)的直流分量。
C 0 = 1 T 0 ∫ − T 0 / 2 T 0 / 2 s ( t ) d t C_{0}=\frac{1}{T_{0}} \int_{-T_{0} / 2}^{T_{0} / 2} s(t) \mathrm{d} t C0=T01∫−T0/2T0/2s(t)dt
频谱函数 C n C_n Cn是一个复数。
C n = ∣ C n ∣ e j θ n C_{n}=\left|C_{n}\right| \mathrm{e}^{\mathrm{j} \theta_{n}} Cn=∣Cn∣ejθn
对于周期性功率信号来说,频谱函数 C n C_n Cn是离散的。
重要性质。
C − n = 1 T 0 ∫ − T 0 / 2 T 0 / 2 s ( t ) e + j 2 π n f 0 t d t = [ 1 T 0 ∫ − T 0 / 2 T 0 / 2 s ( t ) e − j 2 π n f 0 t d t ] ∗ = C n ∗ C_{-n}=\frac{1}{T_{0}} \int_{-T_{0} / 2}^{T_{0} / 2} s(t) \mathrm{e}^{+\mathrm{j} 2 \pi n f_{0} t} \mathrm{~d} t=\left[\frac{1}{T_{0}} \int_{-T_{0} / 2}^{T_{0} / 2} s(t) \mathrm{e}^{-\mathrm{j} 2 \pi n f_{0} t} \mathrm{~d} t\right]^{*}=C_{n}^{*} C−n=T01∫−T0/2T0/2s(t)e+j2πnf0t dt=[T01∫−T0/2T0/2s(t)e−j2πnf0t dt]∗=Cn∗
傅立叶级数也可以展开成三角形式。
s ( t ) = C 0 + ∑ n = 1 ∞ [ a n cos ( 2 π n t / T 0 ) + b n sin ( 2 π n t / T 0 ) ] = C 0 + ∑ n = 1 ∞ [ a n 2 + b n 2 cos ( 2 π n t / T 0 + θ n ) ] 其中 θ n = − arctan ( b n / a n ) \begin{array}{l} \begin{aligned} s(t) & =C_{0}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(2 \pi n t / T_{0}\right)+b_{n} \sin \left(2 \pi n t / T_{0}\right)\right] \\ & =C_{0}+\sum_{n=1}^{\infty}\left[\sqrt{a_{n}^{2}+b_{n}^{2}} \cos \left(2 \pi n t / T_{0}+\theta_{n}\right)\right] \end{aligned}\\ 其中 \quad \theta_{n}=-\arctan \left(b_{n} / a_{n}\right) \end{array} s(t)=C0+n=1∑∞[ancos(2πnt/T0)+bnsin(2πnt/T0)]=C0+n=1∑∞[an2+bn2cos(2πnt/T0+θn)]其中θn=−arctan(bn/an)
C n = 1 T ∫ − τ / 2 τ / 2 V e − j 2 π n f 0 t d t = 1 T [ − V j 2 π n f 0 e − j 2 π n f 0 t ] − τ / 2 τ / 2 = V T e j 2 π n f 0 τ / 2 − e − j 2 π n f 0 τ / 2 j 2 π n f 0 = V π n f 0 T sin π n f 0 τ = V τ T S a ( n π τ T ) \begin{aligned} C_{n} & =\frac{1}{T} \int_{-\tau / 2}^{\tau / 2} V \mathrm{e}^{-\mathrm{j} 2 \pi n f_{0} t} \mathrm{~d} t=\frac{1}{T}\left[-\frac{V}{\mathrm{j} 2 \pi n f_{0}} \mathrm{e}^{-\mathrm{j} 2 \pi n f_{0} t}\right]_{-\tau / 2}^{\tau / 2} \\ & =\frac{V}{T} \frac{\mathrm{e}^{\mathrm{j} 2 \pi n f_{0} \tau / 2}-\mathrm{e}^{-\mathrm{j} 2 \pi n f_{0} \tau / 2}}{\mathrm{j} 2 \pi n f_{0}}=\frac{V}{\pi n f_{0} T} \sin \pi n f_{0} \tau= \frac{V \tau}{T} \mathrm{Sa}\left(\frac{n \pi \tau}{T}\right) \end{aligned} Cn=T1∫−τ/2τ/2Ve−j2πnf0t dt=T1[−j2πnf0Ve−j2πnf0t]−τ/2τ/2=TVj2πnf0ej2πnf0τ/2−e−j2πnf0τ/2=πnf0TVsinπnf0τ=TVτSa(Tnπτ)
记住答案,很重要。
C n = V τ T S a ( n π τ T ) C_n = \frac{V \tau}{T} \mathrm{Sa}\left(\frac{n \pi \tau}{T}\right) Cn=TVτSa(Tnπτ)
注意叫法,功率信号的傅里叶系数 C n C_n Cn是叫做功率信号的频谱。
而,能量信号的傅里叶变换结果 S ( f ) S(f) S(f)叫做频谱密度。
S ( f ) = ∫ − ∞ ∞ s ( t ) e − j 2 π f t d t S(f)=\int_{-\infty}^{\infty} s(t) \mathrm{e}^{-\mathrm{j} 2 \pi f t} \mathrm{~d} t S(f)=∫−∞∞s(t)e−j2πft dt
S ( f ) S(f) S(f)的逆傅立叶变换就是原信号。
s ( t ) = ∫ − ∞ ∞ S ( f ) e j 2 π f t d f s(t)=\int_{-\infty}^{\infty} S(f) \mathrm{e}^{\mathrm{j} 2 \pi f t} \mathrm{~d} f s(t)=∫−∞∞S(f)ej2πft df
实能量信号的频谱密度和实功率信号的频谱有一个共同的特征,即负频谱和正频谱的模偶对称,相位奇对称。
∫ − ∞ ∞ s ( t ) e − j 2 π f t d t = [ ∫ − ∞ ∞ s ( t ) e + j 2 π f t d t ] ∗ S ( f ) = [ S ( − f ) ] ∗ \int_{-\infty}^{\infty} s(t) \mathrm{e}^{-\mathrm{j} 2 \pi f t} \mathrm{~d} t=\left[\int_{-\infty}^{\infty} s(t) \mathrm{e}^{+\mathrm{j} 2 \pi f t} \mathrm{~d} t\right]^{*} \\ S(f)=[S(-f)]^{*} ∫−∞∞s(t)e−j2πft dt=[∫−∞∞s(t)e+j2πft dt]∗S(f)=[S(−f)]∗
矩形脉冲的表达式为。
g τ ( t ) = { 1 ∣ t ∣ ⩽ τ / 2 0 ∣ t ∣ > τ / 2 g_{\tau}(t)=\left\{\begin{array}{ll} 1 & |t| \leqslant \tau / 2 \\ 0 & |t|>\tau / 2 \end{array}\right. gτ(t)={10∣t∣⩽τ/2∣t∣>τ/2
傅立叶变换结果为。
G τ ( f ) = τ S a ( π f τ ) G_\tau(f) = \tau \mathrm{Sa}(\pi f \tau) Gτ(f)=τSa(πfτ)
很重要,要记住。
f ( t ) F ( w ) f ( t ) F ( w ) δ ( t ) 1 r e c t ( t / τ ) τ S a ( w τ / 2 ) 1 2 π δ ( w ) W 2 π S a ( W t 2 ) r e c t ( w W ) e j w 0 t 2 π δ ( w − w 0 ) c o s ( w 0 t ) π [ δ ( w − w 0 ) + δ ( w + w 0 ) ] s g n ( t ) 2 j w s i n ( w 0 t ) π j [ δ ( w − w 0 ) − δ ( w + w 0 ) ] j 1 π t s g n ( w ) e − α ∣ t ∣ 2 α α 2 + w 2 u ( t ) π δ ( w ) + 1 j w u ( t ) e − α t 1 α + j ω δ T ( t ) = ∑ n = − ∞ ∞ δ ( t − n T ) 2 π T ∑ n = − ∞ ∞ δ ( ω − n ⋅ 2 π T ) u ( t ) t e − α t 1 ( α + j ω ) 2 \begin{array}{cc|cc} \hline f(t) & F(w) & f(t) & F(w) \\ \hline \delta(t) & 1 & rect(t/\tau) & \tau Sa(w\tau/2) \\ 1 & 2\pi\delta(w) & \frac{W}{2\pi}Sa(\frac{Wt}{2}) & rect(\frac{w}{W}) \\ e^{jw_0t} & 2\pi\delta (w-w_0) & cos(w_0t) & \pi[\delta(w-w_0)+\delta(w+w_0)] \\ sgn(t) & \frac{2}{jw} & sin(w_0t) & \frac{\pi}{j}[\delta(w-w_0)-\delta(w+w_0)] \\ j\frac{1}{\pi t} & sgn(w) & e^{-\alpha |t| } & \frac{2\alpha}{\alpha ^2+w^2} \\ u(t) & \pi\delta(w)+\frac{1}{jw} & u(t) \mathrm{e}^{-\alpha t} & \frac{1}{\alpha+\mathrm{j} \omega}\\ \delta_{T}(t)=\sum_{n=-\infty}^{\infty} \delta(t-n T) & \frac{2 \pi}{T} \sum_{n=-\infty}^{\infty} \delta\left(\omega-n \cdot \frac{2 \pi}{T}\right) & u(t) t \mathrm{e}^{-\alpha t} & \frac{1}{(\alpha+\mathrm{j} \omega)^{2}} \\ \hline \end{array} f(t)δ(t)1ejw0tsgn(t)jπt1u(t)δT(t)=∑n=−∞∞δ(t−nT)F(w)12πδ(w)2πδ(w−w0)jw2sgn(w)πδ(w)+jw1T2π∑n=−∞∞δ(ω−n⋅T2π)f(t)rect(t/τ)2πWSa(2Wt)cos(w0t)sin(w0t)e−α∣t∣u(t)e−αtu(t)te−αtF(w)τSa(wτ/2)rect(Ww)π[δ(w−w0)+δ(w+w0)]jπ[δ(w−w0)−δ(w+w0)]α2+w22αα+jω1(α+jω)21
能量E。
E = ∫ − ∞ ∞ s 2 ( t ) d t E=\int_{-\infty}^{\infty} s^{2}(t) \mathrm{d} t E=∫−∞∞s2(t)dt
巴塞伐尔定理。
E = ∫ − ∞ ∞ s 2 ( t ) d t = ∫ − ∞ ∞ ∣ S ( f ) ∣ 2 d f E=\int_{-\infty}^{\infty} s^{2}(t) \mathrm{d} t=\int_{-\infty}^{\infty}|S(f)|^{2} \mathrm{~d} f E=∫−∞∞s2(t)dt=∫−∞∞∣S(f)∣2 df
能量谱密度。
G ( f ) = ∣ S ( f ) ∣ 2 ( J / H z ) G(f)=|S(f)|^{2} \quad(\mathrm{~J}/\mathrm{Hz}) G(f)=∣S(f)∣2( J/Hz)
由于信号 s ( t ) s(t) s(t)是实函数,所以 ∣ S ( f ) ∣ |S(f)| ∣S(f)∣是一个偶函数。
巴塞伐尔定理。
E = ∫ − T / 2 T / 2 s T 2 ( t ) d t = ∫ − ∞ ∞ ∣ S T ( f ) ∣ 2 d f E=\int_{-T / 2}^{T / 2} s_{T}^{2}(t) \mathrm{d} t=\int_{-\infty}^{\infty}\left|S_{T}(f)\right|^{2} \mathrm{~d} f E=∫−T/2T/2sT2(t)dt=∫−∞∞∣ST(f)∣2 df
功率谱密度。
P ( f ) = lim T → ∞ 1 T ∣ S T ( f ) ∣ 2 P(f) = \lim _{T \rightarrow \infty} \frac{1}{T}|S_{T}(f)|^{2} P(f)=T→∞limT1∣ST(f)∣2
功率用功率谱密度表示。
P = lim T → ∞ 1 T ∫ − ∞ ∞ ∣ S T ( f ) ∣ 2 d f = ∫ − ∞ ∞ P ( f ) d f P=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-\infty}^{\infty}\left|S_{T}(f)\right|^{2} \mathrm{~d} f=\int_{-\infty}^{\infty} P(f) \mathrm{d} f P=T→∞limT1∫−∞∞∣ST(f)∣2 df=∫−∞∞P(f)df
确知信号再时域中的性质主要有自相关函数和互相关函数。
R ( τ ) = ∫ − ∞ ∞ s ( t ) s ( t + τ ) d t − ∞ < τ < ∞ R(\tau)=\int_{-\infty}^{\infty} s(t) s(t+\tau) \mathrm{d} t \quad-\infty<\tau<\infty R(τ)=∫−∞∞s(t)s(t+τ)dt−∞<τ<∞
自相关函数反映了一个信号延迟 τ \tau τ后的同一信号间的相关程度。自相关函数 R ( τ ) R(\tau) R(τ)和时间t无关,只和时间差 τ \tau τ有关。
当 τ = 0 \tau=0 τ=0的时候,能量信号的自相关函数 R ( 0 ) R(0) R(0)等于信号的能量。
R ( 0 ) = E 前提是能量信号 R(0) = E \quad 前提是能量信号 R(0)=E前提是能量信号
此外, R ( τ ) R(\tau) R(τ)是偶函数。
自相关函数和能量谱密度的关系。
能量谱密度的逆傅立叶变换就是能量信号的自相关函数。
R ( τ ) = ∫ − ∞ ∞ ∣ S ( f ) ∣ 2 e j 2 π f τ d f R(\tau)=\int_{-\infty}^{\infty}|S(f)|^{2} \mathrm{e}^{\mathrm{j} 2 \pi f \tau} \mathrm{d} f R(τ)=∫−∞∞∣S(f)∣2ej2πfτdf
R ( τ ) R(\tau) R(τ)和 ∣ S ( f ) ∣ 2 |S(f)|^2 ∣S(f)∣2构成一对傅立叶变换。
功率信号自相关函数的定义。
R ( τ ) = lim T → ∞ 1 T ∫ − T / 2 T / 2 s ( t ) s ( t + τ ) d t − ∞ < τ < ∞ R(\tau)=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{T / 2} s(t) s(t+\tau) \mathrm{d} t \quad-\infty<\tau<\infty R(τ)=T→∞limT1∫−T/2T/2s(t)s(t+τ)dt−∞<τ<∞
由定义可以看出, τ = 0 \tau=0 τ=0的时候,功率信号的自相关函数 R ( 0 ) R(0) R(0)等于信号的平均功率。
R ( 0 ) = lim T → ∞ 1 T ∫ − T / 2 T / 2 s 2 ( t ) d t = P R(0)=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{T / 2} s^{2}(t) \mathrm{d} t=P R(0)=T→∞limT1∫−T/2T/2s2(t)dt=P
功率信号的自相关函数也是偶函数。
对于周期性的功率信号,自相关函数的定义可以改写为。
R ( τ ) = 1 T 0 ∫ − T 0 / 2 T 0 / 2 s ( t ) s ( t + τ ) d t − ∞ < τ < ∞ R(\tau)=\frac{1}{T_{0}} \int_{-T_{0} / 2}^{T_{0} / 2} s(t) s(t+\tau) \mathrm{d} t \quad-\infty<\tau<\infty R(τ)=T01∫−T0/2T0/2s(t)s(t+τ)dt−∞<τ<∞
功率信号的自相关函数的傅立叶变换就是功率谱密度。
P ( f ) = ∫ − ∞ ∞ R ( τ ) e − j 2 π f τ d τ P(f)=\int_{-\infty}^{\infty} R(\tau) \mathrm{e}^{-\mathrm{j} 2 \pi f \tau} \mathrm{d} \tau P(f)=∫−∞∞R(τ)e−j2πfτdτ
两个能量信号 s 1 ( t ) s_1(t) s1(t)和 s 2 ( t ) s_2(t) s2(t)的互相关函数定义如下。
R 12 ( τ ) = ∫ − ∞ ∞ s 1 ( t ) s 2 ( t + τ ) d t − ∞ < τ < ∞ R_{12}(\tau)=\int_{-\infty}^{\infty} s_{1}(t) s_{2}(t+\tau) \mathrm{d} t \quad-\infty<\tau<\infty R12(τ)=∫−∞∞s1(t)s2(t+τ)dt−∞<τ<∞
顺序很重要。
R 21 ( τ ) = R 12 ( − τ ) R_{21}(\tau) = R_{12}(-\tau) R21(τ)=R12(−τ)
互相关函数和能量谱密度的关系。
互能量谱密度定义。
S 12 ( f ) = S 1 ∗ ( f ) S 2 ( f ) S_{12}(f)=S_{1}^{*}(f) S_{2}(f) S12(f)=S1∗(f)S2(f)
所以互相关函数和互能量谱密度也是一对傅立叶变换。
S 12 ( f ) = ∫ − ∞ ∞ R 12 ( τ ) e − j 2 π / τ d τ S_{12}(f)=\int_{-\infty}^{\infty} R_{12}(\tau) \mathrm{e}^{-\mathrm{j} 2 \pi / \tau} \mathrm{d} \tau S12(f)=∫−∞∞R12(τ)e−j2π/τdτ
两个功率信号的互相关函数定义为。
R 12 ( τ ) = lim T → ∞ 1 T ∫ − T / 2 T / 2 s 1 ( t ) s 2 ( t + τ ) d t R_{12}(\tau)=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{T / 2} s_{1}(t) s_{2}(t+\tau) \mathrm{d} t R12(τ)=T→∞limT1∫−T/2T/2s1(t)s2(t+τ)dt
如果两个功率信号的周期相同,则其互相关函数的定义可以写成。
R 12 ( τ ) = 1 T ∫ − T / 2 T / 2 s 1 ( t ) s 2 ( t + τ ) d t − ∞ < τ < ∞ R_{12}(\tau)=\frac{1}{T} \int_{-T / 2}^{T / 2} s_{1}(t) s_{2}(t+\tau) \mathrm{d} t \quad-\infty<\tau<\infty R12(τ)=T1∫−T/2T/2s1(t)s2(t+τ)dt−∞<τ<∞
互功率谱定义。
C 12 = ( C n ) 1 ∗ ( C n ) 2 C_{12}=\left(C_{n}\right)_{1}^{*}\left(C_{n}\right)_{2} C12=(Cn)1∗(Cn)2
周期性功率信号的互功率谱 C 12 C_{12} C12是其互相关函数 R 12 ( τ ) R_{12}(\tau) R12(τ)的傅立叶级数的系数。