我们这次Spark-sql操作所有的数据均来自Hive,首先在Hive中创建表,并导入数据。一共有3张表:1张用户行为表,1张城市表,1张产品表。
1)将city_info.txt、product_info.txt、user_visit_action.txt上传到/opt/module/data
[atguigu@hadoop102 module]$ mkdir data
2)将创建对应的三张表
hive (default)>
CREATE TABLE `user_visit_action`(
`date` string,
`user_id` bigint,
`session_id` string,
`page_id` bigint,
`action_time` string,
`search_keyword` string,
`click_category_id` bigint,
`click_product_id` bigint, --点击商品id,没有商品用-1表示。
`order_category_ids` string,
`order_product_ids` string,
`pay_category_ids` string,
`pay_product_ids` string,
`city_id` bigint --城市id
)
row format delimited fields terminated by '\t';
CREATE TABLE `city_info`(
`city_id` bigint, --城市id
`city_name` string, --城市名称
`area` string --区域名称
)
row format delimited fields terminated by '\t';
CREATE TABLE `product_info`(
`product_id` bigint, -- 商品id
`product_name` string, --商品名称
`extend_info` string
)
row format delimited fields terminated by '\t';
3)并加载数据
hive (default)>
load data local inpath '/opt/module/data/user_visit_action.txt' into table user_visit_action;
load data local inpath '/opt/module/data/product_info.txt' into table product_info;
load data local inpath '/opt/module/data/city_info.txt' into table city_info;
4)测试一下三张表数据是否正常
hive (default)>
select * from user_visit_action limit 5;
select * from product_info limit 5;
select * from city_info limit 5;
这里的热门商品是从点击量的维度来看的,计算各个区域前三大热门商品,并备注上每个商品在主要城市中的分布比例,超过两个城市用其他显示。
例如:
地区 |
商品名称 |
点击次数 |
城市备注 |
华北 |
商品A |
100000 |
北京21.2%,天津13.2%,其他65.6% |
华北 |
商品P |
80200 |
北京63.0%,太原10%,其他27.0% |
华北 |
商品M |
40000 |
北京63.0%,太原10%,其他27.0% |
东北 |
商品J |
92000 |
大连28%,辽宁17.0%,其他 55.0% |
CREATE TABLE `user_visit_action`(
`date` string,
`user_id` bigint,
`session_id` string,
`page_id` bigint,
`action_time` string,
`search_keyword` string,
`click_category_id` bigint,
`click_product_id` bigint, --点击商品id,没有商品用-1表示。
`order_category_ids` string,
`order_product_ids` string,
`pay_category_ids` string,
`pay_product_ids` string,
`city_id` bigint --城市id
)
CREATE TABLE `city_info`(
`city_id` bigint, --城市id
`city_name` string, --城市名称
`area` string --区域名称
)
CREATE TABLE `product_info`(
`product_id` bigint, -- 商品id
`product_name` string, --商品名称
`extend_info` string
)
city_remark
IN: 城市名称 String
BUFF: totalcnt总点击量,Map[(cityName, 点击数量)]
OUT:城市备注 String
select
c.area, --地区
c.city_name, -- 城市
p.product_name, -- 商品名称
v.click_product_id -- 点击商品id
from user_visit_action v
join city_info c
on v.city_id = c.city_id
join product_info p
on v.click_product_id = p.product_id
where click_product_id > -1
select
t1.area, --地区
t1.product_name, -- 商品名称
count(*) click_count, -- 商品点击次数
city_remark(t1.city_name) --城市备注
from t1
group by t1.area, t1.product_name
select
*,
rank() over(partition by t2.area order by t2.click_count desc) rank -- 每个区域内按照点击量,倒序排行
from t2
select
*
from t3
where rank <= 3
使用Spark-SQL来完成复杂的需求,可以使用UDF或UDAF。
(1)查询出来所有的点击记录,并与city_info表连接,得到每个城市所在的地区,与 Product_info表连接得到商品名称。
(2)按照地区和商品名称分组,统计出每个商品在每个地区的总点击次数。
(3)每个地区内按照点击次数降序排列。
(4)只取前三名,并把结果保存在数据库中。
(5)城市备注需要自定义UDAF函数。
package com.atguigu.sparksql.demo;
import lombok.Data;
import org.apache.spark.SparkConf;
import org.apache.spark.sql.*;
import org.apache.spark.sql.expressions.Aggregator;
import java.io.Serializable;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.TreeMap;
import java.util.function.BiConsumer;
import static org.apache.spark.sql.functions.udaf;
public class Test01_Top3 {
public static void main(String[] args) {
// 1. 创建sparkConf配置对象
SparkConf conf = new SparkConf().setAppName("sql").setMaster("local[*]");
// 2. 创建sparkSession连接对象
SparkSession spark = SparkSession.builder().enableHiveSupport().config(conf).getOrCreate();
// 3. 编写代码
// 将3个表格数据join在一起
Dataset<Row> t1DS = spark.sql("select \n" +
"\tc.area,\n" +
"\tc.city_name,\n" +
"\tp.product_name\n" +
"from\n" +
"\tuser_visit_action u\n" +
"join\n" +
"\tcity_info c\n" +
"on\n" +
"\tu.city_id=c.city_id\n" +
"join\n" +
"\tproduct_info p\n" +
"on\n" +
"\tu.click_product_id=p.product_id");
t1DS.createOrReplaceTempView("t1");
spark.udf().register("cityMark",udaf(new CityMark(),Encoders.STRING()));
// 将区域内的产品点击次数统计出来
Dataset<Row> t2ds = spark.sql("select \n" +
"\tarea,\n" +
"\tproduct_name,\n" +
"\tcityMark(city_name) mark,\n" +
"\tcount(*) counts\n" +
"from\t\n" +
"\tt1\n" +
"group by\n" +
"\tarea,product_name");
// t2ds.show(false);
t2ds.createOrReplaceTempView("t2");
// 对区域内产品点击的次数进行排序 找出区域内的top3
spark.sql("select\n" +
"\tarea,\n" +
"\tproduct_name,\n" +
"\tmark,\n" +
"\trank() over (partition by area order by counts desc) rk\n" +
"from \n" +
"\tt2").createOrReplaceTempView("t3");
// 使用过滤 取出区域内的top3
spark.sql("select\n" +
"\tarea,\n" +
"\tproduct_name,\n" +
"\tmark \n" +
"from\n" +
"\tt3\n" +
"where \n" +
"\trk < 4").show(50,false);
// 4. 关闭sparkSession
spark.close();
}
@Data
public static class Buffer implements Serializable {
private Long totalCount;
private HashMap<String,Long> map;
public Buffer() {
}
public Buffer(Long totalCount, HashMap<String, Long> map) {
this.totalCount = totalCount;
this.map = map;
}
}
public static class CityMark extends Aggregator<String, Buffer, String> {
public static class CityCount {
public String name;
public Long count;
public CityCount(String name, Long count) {
this.name = name;
this.count = count;
}
public CityCount() {
}
}
public static class CompareCityCount implements Comparator<CityCount> {
/**
* 默认倒序
* @param o1
* @param o2
* @return
*/
@Override
public int compare(CityCount o1, CityCount o2) {
if (o1.count > o2.count) {
return -1;
} else return o1.count.equals(o2.count) ? 0 : 1;
}
}
@Override
public Buffer zero() {
return new Buffer(0L, new HashMap<String, Long>());
}
/**
* 分区内的预聚合
*
* @param b map(城市,sum)
* @param a 当前行表示的城市
* @return
*/
@Override
public Buffer reduce(Buffer b, String a) {
HashMap<String, Long> hashMap = b.getMap();
// 如果map中已经有当前城市 次数+1
// 如果map中没有当前城市 0+1
hashMap.put(a, hashMap.getOrDefault(a, 0L) + 1);
b.setTotalCount(b.getTotalCount() + 1L);
return b;
}
/**
* 合并多个分区间的数据
*
* @param b1 (北京,100),(上海,200)
* @param b2 (天津,100),(上海,200)
* @return
*/
@Override
public Buffer merge(Buffer b1, Buffer b2) {
b1.setTotalCount(b1.getTotalCount() + b2.getTotalCount());
HashMap<String, Long> map1 = b1.getMap();
HashMap<String, Long> map2 = b2.getMap();
// 将map2中的数据放入合并到map1
map2.forEach(new BiConsumer<String, Long>() {
@Override
public void accept(String s, Long aLong) {
map1.put(s, aLong + map1.getOrDefault(s, 0L));
}
});
return b1;
}
/**
* map => {(上海,200),(北京,100),(天津,300)}
*
* @param reduction
* @return
*/
@Override
public String finish(Buffer reduction) {
Long totalCount = reduction.getTotalCount();
HashMap<String, Long> map = reduction.getMap();
// 需要对map中的value次数进行排序
ArrayList<CityCount> cityCounts = new ArrayList<>();
// 将map中的数据放入到treeMap中 进行排序
map.forEach(new BiConsumer<String, Long>() {
@Override
public void accept(String s, Long aLong) {
cityCounts.add(new CityCount(s, aLong));
}
});
cityCounts.sort(new CompareCityCount());
ArrayList<String> resultMark = new ArrayList<>();
Double sum = 0.0;
// 当前没有更多的城市数据 或者 已经找到两个城市数据了 停止循环
while (!(cityCounts.size() == 0) && resultMark.size() < 2) {
CityCount cityCount = cityCounts.get(0);
resultMark.add(cityCount.name + String.format("%.2f",cityCount.count.doubleValue() / totalCount * 100) + "%");
cityCounts.remove(0);
}
// 拼接其他城市
if (cityCounts.size() > 0) {
resultMark.add("其他" + String.format("%.2f", 100 - sum) + "%");
}
StringBuilder cityMark = new StringBuilder();
for (String s : resultMark) {
cityMark.append(s).append(",");
}
return cityMark.substring(0, cityMark.length() - 1);
}
@Override
public Encoder<Buffer> bufferEncoder() {
return Encoders.javaSerialization(Buffer.class);
}
@Override
public Encoder<String> outputEncoder() {
return Encoders.STRING();
}
}
}