卡尔曼家族从零解剖-(07) 高斯分布积分为1,高斯分布线性变换依旧为高斯分布,两高斯函数乘积仍为高斯。

讲解关于slam一系列文章汇总链接:史上最全slam从零开始,针对于本栏目讲解的 卡尔曼家族从零解剖 链接 :卡尔曼家族从零解剖-(00)目录最新无死角讲解:https://blog.csdn.net/weixin_43013761/article/details/133846882
 
文末正下方中心提供了本人 联系方式, 点击本人照片即可显示 W X → 官方认证 {\color{blue}{文末正下方中心}提供了本人 \color{red} 联系方式,\color{blue}点击本人照片即可显示WX→官方认证} 文末正下方中心提供了本人联系方式,点击本人照片即可显示WX官方认证
 

一、 前言

该篇博客,主要是对前面知识点进行扫盲,因为有太多的疑惑还没有得到解答,若直接略过直接展开后面的内容进行讲解,就没有办法达到个人编写该系列博客目的,本人是希望彻头彻尾弄明白卡尔曼滤波,及其分支。哪怕掘地三尺,刨根问底也再所不辞。在这之前,个人觉得需要把上篇博客拓展的内容,重述一遍。因为其对卡尔曼滤波的应用确实比较重要:

( 1 ) : \color{red} (1): (1) 卡尔曼滤波并不需要每次迭代都进行观测,可以以一定频率进行观测更新。其主要与观测数据精度相关,精度越高,允许间隔观测的间隔时长越大。且每次观测,可以观测多个数据。

( 2 ) : \color{red} (2): (2)卡尔曼滤波递推公式虽然是线性的,但是这并不意味着其只能应用于线性变换的场景,其也适用于一些复杂的非线性变换场景,需要观测频率较高。

当然,这篇博客有这篇博客的重点,上面仅仅是记录一下重点而已,下面三个问题就是该篇博客需要解答的:

( 1 ) : \color{blue} (1): (1)高斯分布分布负无穷到正无穷的积分为什么是1?
( 2 ) : \color{blue} (2): (2) 高斯分布经过线性变换为什么还是高斯分布?
( 3 ) : \color{blue} (3): (3) 两个高斯分布函数的乘积为什么依旧是高斯分布?

你可能感兴趣的:(卡尔曼滤波,高斯分布,slam,两高斯函数乘积,高斯函数积分)