本文承接自:
算法实战:亲自写红黑树之一-CSDN博客
算法实战:亲自写红黑树之二 完整代码-CSDN博客
算法实战:亲自写红黑树之三 算法详解-CSDN博客
算法实战:亲自写红黑树之四 插入insert的平衡-CSDN博客
目录
一、入口
二、删除
三、转换中间节点(左右子树都存在)
四、简单情形
五、复杂情形
有几个不同参数的删除入口:
bool erase(const_iterator it)
{
T_COMP comp;
return erase(it, comp);
}
//删除并指向下一个
iterator& DeleteAndMoveNext(iterator& it)
{
if (end() == it)return it;
iterator& ret = it;
iterator tmp = ret;
++ret;
erase(tmp);
return ret;
}
bool erase(const_iterator it, T_COMP& comp)
{
if (it.handle < 0)return true;
//DEBUG_LOG<<"要删除节点"<
最终都进入_erase(h),直接删除一个节点。
在到达这一步之前要先找到要删除的节点,这个属于二叉树的标准算法,很简单。
删除的控制代码:
//删除
bool _erase(T_SHM_SIZE position)
{
string report;
//DEBUG_LOG<<"开始删除...."<hHead = -1;
vRed = true;//阻止后面继续处理,删除红色无需额外处理
}
else
{
debug_log << "叶子节点" << endi;
if (TREE_NODE::at(position).isLeft())TREE_NODE::at(p).hLeft = -1;
else TREE_NODE::at(p).hRight = -1;
}
}
else
{
vLeft = TREE_NODE::at(position).isLeft();
vRed = TREE_NODE::at(position).bColorRed;
if (-1 != TREE_NODE::at(position).hLeft)
{
debug_log << "左子树存在" << endi;
u = TREE_NODE::at(position).hLeft;
}
else
{
debug_log << "右子树存在" << endi;
u = TREE_NODE::at(position).hRight;
}
if (-1 == p)
{
debug_log << "根节点" << endi;
tree_head->hHead = u;
}
else
{
if (vLeft)TREE_NODE::at(p).hLeft = u;
else TREE_NODE::at(p).hRight = u;
}
TREE_NODE::at(u).hParent = p;
uRed = TREE_NODE::at(u).bColorRed;
p = TREE_NODE::at(u).hParent;
}
bool ret = true;
if (vRed)
{
debug_log << "删除红色节点,不用调整" << endi;
}
else if (!vRed && uRed)
{
debug_log << "删除黑色节点,替换节点红色改为黑色" << endi;
TREE_NODE::at(u).bColorRed = false;
}
else
{
debug_log << "删除双黑节点================================================" << endi;
ret = _RB_erase_Balance(p, u);
}
debug();
if (ret)__erase_node(position);
if (-1 != tree_head->hHead)TREE_NODE::at(tree_head->hHead).bColorRed = false;
return ret;
}
这个函数的逻辑分为两部分:
很容易把中间节点替换掉,跟左子树最大值或者右子树最小值交换即可。
本代码用__erase_change_middle(h)函数做这件事,将颜色也做了交换(逻辑上相当于不改变结构数据,只交换用户数据,但是我们的用户数据一般都很大,所以反过来操作,改变了除用户数据以外的所有结构数据),执行完毕后红黑树结构仍然正确,删除节点变成了最多只有一个子树的节点。
//删除中间节点,将中间节点替换为左子树最大值(数据不动,改变树结构)
bool __erase_change_middle(T_SHM_SIZE const position, bool& vLeft, bool& vRed, T_SHM_SIZE& u, bool& uRed, T_SHM_SIZE& p)
{
string tmp;
T_SHM_SIZE new_position = TREE_NODE::at(position).hLeft;
if (-1 != new_position)
{
while (-1 != TREE_NODE::at(new_position).hRight)
{
new_position = TREE_NODE::at(new_position).hRight;
}
}
debug_log << "position " << position << " new_position " << new_position << endi;
debug_log << "position " << position << TREE_NODE::at(position).toString(tmp) << endi;
debug_log << "new_position " << new_position << TREE_NODE::at(new_position).toString(tmp) << endi;
vLeft = false;
vRed = TREE_NODE::at(new_position).bColorRed;
p = TREE_NODE::at(new_position).hParent;
debug_log << "p " << TREE_NODE::at(p).toString(tmp) << endi;
if (p != position)
{
debug_log << "非直接对调 p " << TREE_NODE::at(p).toString(tmp) << ende;
TREE_NODE t;
t._CopyWithoutData(TREE_NODE::at(new_position));
TREE_NODE::at(new_position)._CopyWithoutData(TREE_NODE::at(position));
TREE_NODE::at(position)._CopyWithoutData(t);
debug_log << "position " << TREE_NODE::at(position).toString(tmp) << endi;
debug_log << "new_position " << TREE_NODE::at(new_position).toString(tmp) << endi;
//注意,这里无法用isLeft来判断,因为父节点的hLeft和hRight是旧数据
if (TREE_NODE::at(new_position).hParent != -1)
{
if (TREE_NODE::at(TREE_NODE::at(new_position).hParent).hLeft == position)TREE_NODE::at(TREE_NODE::at(new_position).hParent).hLeft = new_position;
else TREE_NODE::at(TREE_NODE::at(new_position).hParent).hRight = new_position;
}
if (TREE_NODE::at(position).hParent != -1)
{
if (TREE_NODE::at(TREE_NODE::at(position).hParent).hLeft==new_position)TREE_NODE::at(TREE_NODE::at(position).hParent).hLeft = position;
else TREE_NODE::at(TREE_NODE::at(position).hParent).hRight = position;
}
if (TREE_NODE::at(new_position).hLeft != -1)TREE_NODE::at(TREE_NODE::at(new_position).hLeft).hParent = new_position;
if (TREE_NODE::at(position).hLeft != -1)TREE_NODE::at(TREE_NODE::at(position).hLeft).hParent = position;
if (TREE_NODE::at(new_position).hRight != -1)TREE_NODE::at(TREE_NODE::at(new_position).hRight).hParent = new_position;
if (TREE_NODE::at(position).hRight != -1)TREE_NODE::at(TREE_NODE::at(position).hRight).hParent = position;
}
else
{
debug_log << "直接对调 p " << TREE_NODE::at(p).toString(tmp) << endi;
TREE_NODE t;
t._CopyWithoutData(TREE_NODE::at(new_position));
TREE_NODE::at(new_position)._CopyWithoutData(TREE_NODE::at(position));
TREE_NODE::at(position)._CopyWithoutData(t);
debug_log << "position " << TREE_NODE::at(position).toString(tmp) << endi;
debug_log << "new_position " << TREE_NODE::at(new_position).toString(tmp) << endi;
//注意,这里无法用isLeft来判断,因为父节点的hLeft和hRight是旧数据
if (TREE_NODE::at(new_position).hParent != -1)
{
if (TREE_NODE::at(TREE_NODE::at(new_position).hParent).hLeft == position)TREE_NODE::at(TREE_NODE::at(new_position).hParent).hLeft = new_position;
else TREE_NODE::at(TREE_NODE::at(new_position).hParent).hRight = new_position;
}
TREE_NODE::at(position).hParent = new_position;
TREE_NODE::at(new_position).hLeft=position;
if (TREE_NODE::at(position).hLeft != -1)TREE_NODE::at(TREE_NODE::at(position).hLeft).hParent = position;
if (TREE_NODE::at(new_position).hRight != -1)TREE_NODE::at(TREE_NODE::at(new_position).hRight).hParent = new_position;
if (TREE_NODE::at(position).hRight != -1)TREE_NODE::at(TREE_NODE::at(position).hRight).hParent = position;
}
//如果是根节点
if (-1 == TREE_NODE::at(new_position).hParent)
{
TREE_NODE::at(new_position).bColorRed = false;
tree_head->hHead = new_position;
}
debug_log << "position " << TREE_NODE::at(position).toString(tmp) << endi;
debug_log << "new_position " << TREE_NODE::at(new_position).toString(tmp) << endi;
debug();
return true;
}
这个代码不复杂,就是累。
现在要删除的节点要么没有子树,要么只有一个子树(说起来是子树,其实最多就是一个红节点,否则必定违反红黑树规则),只需要把子树接上去就可以了,然后把要删除的节点扔掉。
这里我们还是用一般二叉树的概念来理解,以下说的节点都是数据节点,不包括空节点。
第三种情形就被称为“复杂情形”,需要调用_RB_erase_Balance()来平衡。
前面已经说了,所谓复杂情形就是少了一个黑节点,现在涉及到这么几个节点:
u 替换节点,也就是出问题的节点,这个节点的高度比兄弟少一。这个节点可能是是空节点。
p 替换节点的父节点
s 替换节点的兄弟节点
由于红黑树的规则限制,最初进入这种情形只可能是被删除节点下没有子节点,所以一定是p的一边为空另一边黑高为1。递归之后黑高少一的节点就有了各种可能,可能是红色或黑色,可能有或没有子节点。
重新平衡有三种策略:
p | s | ss | 处理 | |
1 | 黑 | 黑 | 黑黑/不存在 | p、s交换颜色,问题上移,递归 |
2 | 黑 | 黑 | 红红 | 挪一个红改成黑 |
3 | 黑 | 红 | 黑黑-[红红红红] | 旋转p,p、s交换颜色,p还是少1,但是变色了,重新处理p,递归 |
4 | 红 | 黑 | 红红 | 挪一个红改成黑 |
5 | 红 | 黑 | 黑黑/不存在 | p、s交换颜色 |
上表是所有情形,“不存在”指的是空节点,也是黑色。ss指的是s的子节点。“红红”也可能是只有一个红,因为处理时只要有一个红就不用管另一个。第三种情形的ss是双黑,后面还可能有红色子节点,不过与算法无关。
为什么只有五种组合而不是八种?因为不允许连续红,另外三种不可能存在。
上面第二种和第四种处理方式相同,因为并不关心p的颜色,通过挪一个改成黑,下面就平衡了。
代码的实际处理逻辑是从ss开始判断的,先分成ss至少有一个红和没有红,然后没有红的分三种,有红的分四种(所谓四种不过是四种结构的挪法而已)。
代码如下:
//删除时做平衡,u可能是空节点
bool _RB_erase_Balance(T_SHM_SIZE p, T_SHM_SIZE u)
{
if (-1 == p)
{
debug_log << "已经到顶,结束" << endi;
return true;
}
string tmp;
debug_log << "p " << TREE_NODE::at(p).toString(tmp) << endi;
if (u != -1)debug_log << "u " << TREE_NODE::at(u).toString(tmp) << endi;
else debug_log << "u -1" << endi;
bool isL = (u == TREE_NODE::at(p).hRight);//兄弟节点是否是左节点
T_SHM_SIZE s = (isL ? TREE_NODE::at(p).hLeft : TREE_NODE::at(p).hRight);
T_SHM_SIZE r = -1;//s的红色子节点
bool is_rL;//s的红色子节点是否是左节点
debug_log << "平衡:p " << p << " u " << u << " s " << s << " TREE_NODE::at(s).hRight " << TREE_NODE::at(s).hRight << endi;
if (TREE_NODE::at(s).hRight != -1 && TREE_NODE::at(TREE_NODE::at(s).hRight).bColorRed)
{
r = TREE_NODE::at(s).hRight;
is_rL = false;
}
else if (TREE_NODE::at(s).hLeft != -1 && TREE_NODE::at(TREE_NODE::at(s).hLeft).bColorRed)
{
r = TREE_NODE::at(s).hLeft;
is_rL = true;
}
else
{
r = -1;
is_rL = false;//无意义
}
debug_log << "p " << p << " u " << u << " s " << s << " r(-1表示双黑) " << r << endi;
debug();
if (-1 == r)
{
debug_log << "s子节点均为黑" << endi;
if (TREE_NODE::at(p).bColorRed)
{
debug_log << "p为红,s必为黑 s改为红p改为黑 结束" << endi;//s子节点均为黑,p改为黑,所以s改为红是安全的,不会造成双红
TREE_NODE::at(s).bColorRed = true;
TREE_NODE::at(p).bColorRed = false;
debug();
}
else
{
debug_log << "p为黑" << endi;
if (!TREE_NODE::at(s).bColorRed)
{
debug_log << "s为黑 s改为红平衡下层并向上递归" << endi;//p的左右分支均少1,所以p成为新的双黑节点
//置s为红,p为新的u,递归
TREE_NODE::at(s).bColorRed = true;
debug();
return _RB_erase_Balance(TREE_NODE::at(p).hParent, p);
}
else
{
debug_log << "s为红 " << TREE_NODE::at(s).toString(tmp) << endi;
debug_log << TREE_NODE::at(TREE_NODE::at(s).hParent).toString(tmp) << endi;
if (TREE_NODE::at(s).isLeft())
{
debug_log << "s为左 " << s << endi;
//右旋p
_RRotate(p);
}
else
{
debug_log << "s为右" << endi;
_LRotate(p);
}
//p和s变色
TREE_NODE::at(s).bColorRed = false;
TREE_NODE::at(p).bColorRed = true;
debug();
//此时深度情况不变,但p变成了红,重新对p和u做平衡处理
return _RB_erase_Balance(p, u);
}
}
}
else
{
if (isL && is_rL)
{
debug_log << "LL" << ende;
TREE_NODE::at(r).bColorRed = TREE_NODE::at(s).bColorRed;
TREE_NODE::at(s).bColorRed = TREE_NODE::at(p).bColorRed;
_RRotate(p);
TREE_NODE::at(p).bColorRed = false;
}
else if (isL && !is_rL)
{
debug_log << "LR" << endi;
debug();
TREE_NODE::at(r).bColorRed = TREE_NODE::at(p).bColorRed;
debug();
_LRotate(s);
debug();
_RRotate(p);
debug();
TREE_NODE::at(p).bColorRed = false;
debug();
}
else if (!isL && is_rL)
{
debug_log << "RL------------------------" << endi;
debug();
TREE_NODE::at(r).bColorRed = TREE_NODE::at(p).bColorRed;
debug();
_RRotate(s);
debug();
string tmp;
debug_log << "p " << TREE_NODE::at(p).toString(tmp) << endi;
debug_log << "s " << TREE_NODE::at(p).toString(tmp) << endi;
_LRotate(p);
debug();
TREE_NODE::at(p).bColorRed = false;
debug();
}
else if (!isL && !is_rL)
{
debug_log << "RR" << endi;
TREE_NODE::at(r).bColorRed = TREE_NODE::at(s).bColorRed;
TREE_NODE::at(s).bColorRed = TREE_NODE::at(p).bColorRed;
_LRotate(p);
TREE_NODE::at(p).bColorRed = false;
}
else
{
thelog << "非预期的状态" << ende;
return false;
}
}
return true;
}
我感觉吧,我应该刚好解决了一部分人的困惑。
(这里是结束,而且是整个系列的结束)