物联网开发笔记(11)- 使用Wokwi仿真MicroPython on ESP32开发板实现温度和湿度检测并使用屏幕显示(升级版)

哈喽,大家好,还记得之前我们学习的使用Wokwi仿真MicroPython on ESP32开发板实现温度和湿度检测并使用屏幕显示的内容吗,这次我们加了一个按键,就是报警后可以手动取消报警。

一、目的

        温湿度采集和报警,报警对应的LED灯也亮,而且报警可手动取消。

二、硬件环境

物联网开发笔记(11)- 使用Wokwi仿真MicroPython on ESP32开发板实现温度和湿度检测并使用屏幕显示(升级版)_第1张图片

三、代码

main.py

from dt22 import DHT22
from machine import Pin, I2C,PWM
import oled
import time  

pwm0 = PWM(Pin(4))            
pwm0.duty_u16(32768)
pwm0.deinit()   #初始化pwm用于对蜂鸣器的控制

def interruput(line):
  if p18.value()==1:
    led_red.off();
    led_yellow.off();
    pwm0.deinit();
    time.sleep(3)   #按键的中断函数
p18=machine.Pin(18,machine.Pin.IN,machine.Pin.PULL_UP); #初始化按键
p18.irq(trigger=machine.Pin.IRQ_RISING,handler=interruput) #按键中断

DHT22 = DHT22(2)
resultList = [0, 0, 0, 0, 0]  #初始化DHT22

i2c = I2C(1, scl=Pin(27), sda=Pin(26))
oled_width = 128
oled_height = 64
oled = oled.SSD1306_I2C(oled_width, oled_height, i2c) #初始化Oled

led_red=Pin(14,Pin.OUT) 
led_yellow=Pin(15,Pin.OUT)  #初始化led

while True:                   
    oled.fill(0)  #清屏
    time.sleep(3)
    DHT22.read_bytes(resultList)  #DHt22数据的采集
    HumData = ((resultList[0] << 8) + resultList[1]) / 10 #湿度
    TemData = ((resultList[2] << 8) + resultList[3]) / 10 #温度

    oled.text('RH={}% T={}C'.format(HumData,TemData), 0, 0) #数据处理   
    oled.show()   #显示到oled
    if TemData>20:  #对温度进行判断
      pwm0.freq(1000)
      led_red.on()
    if HumData>30: #对湿度进行判断
      pwm0.freq(1000)
      led_yellow.on()

diagram.json

{
  "version": 1,
  "author": "Anonymous maker",
  "editor": "wokwi",
  "parts": [
    {
      "type": "wokwi-pi-pico",
      "id": "pico",
      "top": 0,
      "left": 0,
      "attrs": { "env": "micropython-20220117-v1.18" }
    },
    { "type": "wokwi-dht22", "id": "dht1", "top": -98.59, "left": -113.64, "attrs": {} },
    { "type": "wokwi-ssd1306", "id": "oled1", "top": -71.05, "left": 109.69, "attrs": {} },
    {
      "type": "wokwi-buzzer",
      "id": "bz1",
      "top": 56.43,
      "left": -148.61,
      "attrs": { "volume": "0.1" }
    },
    {
      "type": "wokwi-led",
      "id": "led1",
      "top": 151.47,
      "left": -161.92,
      "attrs": { "color": "red" }
    },
    {
      "type": "wokwi-led",
      "id": "led2",
      "top": 150.83,
      "left": -124.53,
      "attrs": { "color": "yellow" }
    },
    {
      "type": "wokwi-pushbutton",
      "id": "btn1",
      "top": 155.62,
      "left": 165.22,
      "attrs": { "bounce": "0", "color": "green" }
    }
  ],
  "connections": [
    [ "dht1:GND", "pico:GND.2", "black", [ "v0" ] ],
    [ "pico:3V3", "oled1:VIN", "green", [ "h202.69", "v-135.43", "h-74.67" ] ],
    [ "oled1:GND", "pico:GND.8", "black", [ "v-26.46", "h-122.84", "v116.67" ] ],
    [ "dht1:VCC", "pico:3V3", "red", [ "v0" ] ],
    [ "dht1:SDA", "pico:GP2", "green", [ "v0" ] ],
    [ "bz1:1", "pico:GND.2", "green", [ "v11.66", "h55.05", "v-67.17" ] ],
    [ "bz1:2", "pico:GP4", "green", [ "v4.69", "h43.45", "v-78.57" ] ],
    [ "led2:A", "pico:GP15", "green", [ "v0" ] ],
    [ "led1:A", "pico:GP14", "green", [ "v8.58", "h117.45", "v-16.48" ] ],
    [ "pico:GND.4", "led2:C", "black", [ "h-55.32", "v35.5", "h-51.33" ] ],
    [ "pico:GND.4", "led1:C", "black", [ "h-54.69", "v33.6", "h-91.25", "v2.53" ] ],
    [ "oled1:DATA", "pico:GP26", "green", [ "v-17.98", "h-40.03", "v180.07" ] ],
    [ "oled1:CLK", "pico:GP27", "green", [ "v-50.9", "h-56.23", "v10.29" ] ],
    [ "btn1:1.l", "pico:GP18", "green", [ "h0" ] ],
    [ "btn1:2.l", "pico:GND.5", "green", [ "h-64.99", "v-4.74" ] ]
  ],
  "serialMonitor": { "display": "plotter", "newline": "lf" }
}

oled.py

#MicroPython SSD1306 OLED driver, I2C and SPI interfaces created by Adafruit

import time
import framebuf

# register definitions
SET_CONTRAST        = const(0x81)
SET_ENTIRE_ON       = const(0xa4)
SET_NORM_INV        = const(0xa6)
SET_DISP            = const(0xae)
SET_MEM_ADDR        = const(0x20)
SET_COL_ADDR        = const(0x21)
SET_PAGE_ADDR       = const(0x22)
SET_DISP_START_LINE = const(0x40)
SET_SEG_REMAP       = const(0xa0)
SET_MUX_RATIO       = const(0xa8)
SET_COM_OUT_DIR     = const(0xc0)
SET_DISP_OFFSET     = const(0xd3)
SET_COM_PIN_CFG     = const(0xda)
SET_DISP_CLK_DIV    = const(0xd5)
SET_PRECHARGE       = const(0xd9)
SET_VCOM_DESEL      = const(0xdb)
SET_CHARGE_PUMP     = const(0x8d)


class SSD1306:
    def __init__(self, width, height, external_vcc):
        self.width = width
        self.height = height
        self.external_vcc = external_vcc
        self.pages = self.height // 8
        # Note the subclass must initialize self.framebuf to a framebuffer.
        # This is necessary because the underlying data buffer is different
        # between I2C and SPI implementations (I2C needs an extra byte).
        self.poweron()
        self.init_display()

    def init_display(self):
        for cmd in (
            SET_DISP | 0x00, # off
            # address setting
            SET_MEM_ADDR, 0x00, # horizontal
            # resolution and layout
            SET_DISP_START_LINE | 0x00,
            SET_SEG_REMAP | 0x01, # column addr 127 mapped to SEG0
            SET_MUX_RATIO, self.height - 1,
            SET_COM_OUT_DIR | 0x08, # scan from COM[N] to COM0
            SET_DISP_OFFSET, 0x00,
            SET_COM_PIN_CFG, 0x02 if self.height == 32 else 0x12,
            # timing and driving scheme
            SET_DISP_CLK_DIV, 0x80,
            SET_PRECHARGE, 0x22 if self.external_vcc else 0xf1,
            SET_VCOM_DESEL, 0x30, # 0.83*Vcc
            # display
            SET_CONTRAST, 0xff, # maximum
            SET_ENTIRE_ON, # output follows RAM contents
            SET_NORM_INV, # not inverted
            # charge pump
            SET_CHARGE_PUMP, 0x10 if self.external_vcc else 0x14,
            SET_DISP | 0x01): # on
            self.write_cmd(cmd)
        self.fill(0)
        self.show()

    def poweroff(self):
        self.write_cmd(SET_DISP | 0x00)

    def contrast(self, contrast):
        self.write_cmd(SET_CONTRAST)
        self.write_cmd(contrast)

    def invert(self, invert):
        self.write_cmd(SET_NORM_INV | (invert & 1))

    def show(self):
        x0 = 0
        x1 = self.width - 1
        if self.width == 64:
            # displays with width of 64 pixels are shifted by 32
            x0 += 32
            x1 += 32
        self.write_cmd(SET_COL_ADDR)
        self.write_cmd(x0)
        self.write_cmd(x1)
        self.write_cmd(SET_PAGE_ADDR)
        self.write_cmd(0)
        self.write_cmd(self.pages - 1)
        self.write_framebuf()

    def fill(self, col):
        self.framebuf.fill(col)

    def pixel(self, x, y, col):
        self.framebuf.pixel(x, y, col)

    def scroll(self, dx, dy):
        self.framebuf.scroll(dx, dy)

    def text(self, string, x, y, col=1):
        self.framebuf.text(string, x, y, col)


class SSD1306_I2C(SSD1306):
    def __init__(self, width, height, i2c, addr=0x3c, external_vcc=False):
        self.i2c = i2c
        self.addr = addr
        self.temp = bytearray(2)
        # Add an extra byte to the data buffer to hold an I2C data/command byte
        # to use hardware-compatible I2C transactions.  A memoryview of the
        # buffer is used to mask this byte from the framebuffer operations
        # (without a major memory hit as memoryview doesn't copy to a separate
        # buffer).
        self.buffer = bytearray(((height // 8) * width) + 1)
        self.buffer[0] = 0x40  # Set first byte of data buffer to Co=0, D/C=1
        self.framebuf = framebuf.FrameBuffer1(memoryview(self.buffer)[1:], width, height)
        super().__init__(width, height, external_vcc)

    def write_cmd(self, cmd):
        self.temp[0] = 0x80 # Co=1, D/C#=0
        self.temp[1] = cmd
        self.i2c.writeto(self.addr, self.temp)

    def write_framebuf(self):
        # Blast out the frame buffer using a single I2C transaction to support
        # hardware I2C interfaces.
        self.i2c.writeto(self.addr, self.buffer)

    def poweron(self):
        pass


class SSD1306_SPI(SSD1306):
    def __init__(self, width, height, spi, dc, res, cs, external_vcc=False):
        self.rate = 10 * 1024 * 1024
        dc.init(dc.OUT, value=0)
        res.init(res.OUT, value=0)
        cs.init(cs.OUT, value=1)
        self.spi = spi
        self.dc = dc
        self.res = res
        self.cs = cs
        self.buffer = bytearray((height // 8) * width)
        self.framebuf = framebuf.FrameBuffer1(self.buffer, width, height)
        super().__init__(width, height, external_vcc)

    def write_cmd(self, cmd):
        self.spi.init(baudrate=self.rate, polarity=0, phase=0)
        self.cs.high()
        self.dc.low()
        self.cs.low()
        self.spi.write(bytearray([cmd]))
        self.cs.high()

    def write_framebuf(self):
        self.spi.init(baudrate=self.rate, polarity=0, phase=0)
        self.cs.high()
        self.dc.high()
        self.cs.low()
        self.spi.write(self.buffer)
        self.cs.high()

    def poweron(self):
        self.res.high()
        time.sleep_ms(1)
        self.res.low()
        time.sleep_ms(10)
        self.res.high()

dt22.py


from machine import Pin
import time

class DHT22():
    def __init__(self, dht_pin):
        self.dht = Pin(dht_pin, Pin.OPEN_DRAIN, Pin.PULL_UP)

    def start(self):
        self.dht(0)
        time.sleep_ms(2)
        self.dht(1)
        while 1:
            if self.dht.value() == 0:

                break

        while 1:
            if self.dht.value() == 1:
                break

        while 1:
            if self.dht.value() == 0:
                break

    def read_bytes(self, dataread):
        byteread = 0
        self.start()
        for j in range(5):
            for i in range(8):
                while 1:
                    if self.dht.value() == 1:
                        break
                time.sleep_us(30)
                if self.dht.value():
                    flag = 1
                    while 1:
                        if self.dht.value() == 0:
                            break
                else:
                    flag = 0
                byteread <<= 1
                byteread |= flag
            dataread[j] = byteread
            byteread = 0










     效果:

     物联网开发笔记(11)- 使用Wokwi仿真MicroPython on ESP32开发板实现温度和湿度检测并使用屏幕显示(升级版)_第2张图片

网页展示效果,请查看如下链接:

Wokwi Arduino and ESP32 Simulatoricon-default.png?t=M7J4https://wokwi.com/projects/341962681824051794

 

你可能感兴趣的:(物联网开发,物联网,servlet,html)