哈喽,大家好,还记得之前我们学习的使用Wokwi仿真MicroPython on ESP32开发板实现温度和湿度检测并使用屏幕显示的内容吗,这次我们加了一个按键,就是报警后可以手动取消报警。
一、目的
温湿度采集和报警,报警对应的LED灯也亮,而且报警可手动取消。
二、硬件环境
三、代码
main.py
from dt22 import DHT22
from machine import Pin, I2C,PWM
import oled
import time
pwm0 = PWM(Pin(4))
pwm0.duty_u16(32768)
pwm0.deinit() #初始化pwm用于对蜂鸣器的控制
def interruput(line):
if p18.value()==1:
led_red.off();
led_yellow.off();
pwm0.deinit();
time.sleep(3) #按键的中断函数
p18=machine.Pin(18,machine.Pin.IN,machine.Pin.PULL_UP); #初始化按键
p18.irq(trigger=machine.Pin.IRQ_RISING,handler=interruput) #按键中断
DHT22 = DHT22(2)
resultList = [0, 0, 0, 0, 0] #初始化DHT22
i2c = I2C(1, scl=Pin(27), sda=Pin(26))
oled_width = 128
oled_height = 64
oled = oled.SSD1306_I2C(oled_width, oled_height, i2c) #初始化Oled
led_red=Pin(14,Pin.OUT)
led_yellow=Pin(15,Pin.OUT) #初始化led
while True:
oled.fill(0) #清屏
time.sleep(3)
DHT22.read_bytes(resultList) #DHt22数据的采集
HumData = ((resultList[0] << 8) + resultList[1]) / 10 #湿度
TemData = ((resultList[2] << 8) + resultList[3]) / 10 #温度
oled.text('RH={}% T={}C'.format(HumData,TemData), 0, 0) #数据处理
oled.show() #显示到oled
if TemData>20: #对温度进行判断
pwm0.freq(1000)
led_red.on()
if HumData>30: #对湿度进行判断
pwm0.freq(1000)
led_yellow.on()
diagram.json
{
"version": 1,
"author": "Anonymous maker",
"editor": "wokwi",
"parts": [
{
"type": "wokwi-pi-pico",
"id": "pico",
"top": 0,
"left": 0,
"attrs": { "env": "micropython-20220117-v1.18" }
},
{ "type": "wokwi-dht22", "id": "dht1", "top": -98.59, "left": -113.64, "attrs": {} },
{ "type": "wokwi-ssd1306", "id": "oled1", "top": -71.05, "left": 109.69, "attrs": {} },
{
"type": "wokwi-buzzer",
"id": "bz1",
"top": 56.43,
"left": -148.61,
"attrs": { "volume": "0.1" }
},
{
"type": "wokwi-led",
"id": "led1",
"top": 151.47,
"left": -161.92,
"attrs": { "color": "red" }
},
{
"type": "wokwi-led",
"id": "led2",
"top": 150.83,
"left": -124.53,
"attrs": { "color": "yellow" }
},
{
"type": "wokwi-pushbutton",
"id": "btn1",
"top": 155.62,
"left": 165.22,
"attrs": { "bounce": "0", "color": "green" }
}
],
"connections": [
[ "dht1:GND", "pico:GND.2", "black", [ "v0" ] ],
[ "pico:3V3", "oled1:VIN", "green", [ "h202.69", "v-135.43", "h-74.67" ] ],
[ "oled1:GND", "pico:GND.8", "black", [ "v-26.46", "h-122.84", "v116.67" ] ],
[ "dht1:VCC", "pico:3V3", "red", [ "v0" ] ],
[ "dht1:SDA", "pico:GP2", "green", [ "v0" ] ],
[ "bz1:1", "pico:GND.2", "green", [ "v11.66", "h55.05", "v-67.17" ] ],
[ "bz1:2", "pico:GP4", "green", [ "v4.69", "h43.45", "v-78.57" ] ],
[ "led2:A", "pico:GP15", "green", [ "v0" ] ],
[ "led1:A", "pico:GP14", "green", [ "v8.58", "h117.45", "v-16.48" ] ],
[ "pico:GND.4", "led2:C", "black", [ "h-55.32", "v35.5", "h-51.33" ] ],
[ "pico:GND.4", "led1:C", "black", [ "h-54.69", "v33.6", "h-91.25", "v2.53" ] ],
[ "oled1:DATA", "pico:GP26", "green", [ "v-17.98", "h-40.03", "v180.07" ] ],
[ "oled1:CLK", "pico:GP27", "green", [ "v-50.9", "h-56.23", "v10.29" ] ],
[ "btn1:1.l", "pico:GP18", "green", [ "h0" ] ],
[ "btn1:2.l", "pico:GND.5", "green", [ "h-64.99", "v-4.74" ] ]
],
"serialMonitor": { "display": "plotter", "newline": "lf" }
}
oled.py
#MicroPython SSD1306 OLED driver, I2C and SPI interfaces created by Adafruit
import time
import framebuf
# register definitions
SET_CONTRAST = const(0x81)
SET_ENTIRE_ON = const(0xa4)
SET_NORM_INV = const(0xa6)
SET_DISP = const(0xae)
SET_MEM_ADDR = const(0x20)
SET_COL_ADDR = const(0x21)
SET_PAGE_ADDR = const(0x22)
SET_DISP_START_LINE = const(0x40)
SET_SEG_REMAP = const(0xa0)
SET_MUX_RATIO = const(0xa8)
SET_COM_OUT_DIR = const(0xc0)
SET_DISP_OFFSET = const(0xd3)
SET_COM_PIN_CFG = const(0xda)
SET_DISP_CLK_DIV = const(0xd5)
SET_PRECHARGE = const(0xd9)
SET_VCOM_DESEL = const(0xdb)
SET_CHARGE_PUMP = const(0x8d)
class SSD1306:
def __init__(self, width, height, external_vcc):
self.width = width
self.height = height
self.external_vcc = external_vcc
self.pages = self.height // 8
# Note the subclass must initialize self.framebuf to a framebuffer.
# This is necessary because the underlying data buffer is different
# between I2C and SPI implementations (I2C needs an extra byte).
self.poweron()
self.init_display()
def init_display(self):
for cmd in (
SET_DISP | 0x00, # off
# address setting
SET_MEM_ADDR, 0x00, # horizontal
# resolution and layout
SET_DISP_START_LINE | 0x00,
SET_SEG_REMAP | 0x01, # column addr 127 mapped to SEG0
SET_MUX_RATIO, self.height - 1,
SET_COM_OUT_DIR | 0x08, # scan from COM[N] to COM0
SET_DISP_OFFSET, 0x00,
SET_COM_PIN_CFG, 0x02 if self.height == 32 else 0x12,
# timing and driving scheme
SET_DISP_CLK_DIV, 0x80,
SET_PRECHARGE, 0x22 if self.external_vcc else 0xf1,
SET_VCOM_DESEL, 0x30, # 0.83*Vcc
# display
SET_CONTRAST, 0xff, # maximum
SET_ENTIRE_ON, # output follows RAM contents
SET_NORM_INV, # not inverted
# charge pump
SET_CHARGE_PUMP, 0x10 if self.external_vcc else 0x14,
SET_DISP | 0x01): # on
self.write_cmd(cmd)
self.fill(0)
self.show()
def poweroff(self):
self.write_cmd(SET_DISP | 0x00)
def contrast(self, contrast):
self.write_cmd(SET_CONTRAST)
self.write_cmd(contrast)
def invert(self, invert):
self.write_cmd(SET_NORM_INV | (invert & 1))
def show(self):
x0 = 0
x1 = self.width - 1
if self.width == 64:
# displays with width of 64 pixels are shifted by 32
x0 += 32
x1 += 32
self.write_cmd(SET_COL_ADDR)
self.write_cmd(x0)
self.write_cmd(x1)
self.write_cmd(SET_PAGE_ADDR)
self.write_cmd(0)
self.write_cmd(self.pages - 1)
self.write_framebuf()
def fill(self, col):
self.framebuf.fill(col)
def pixel(self, x, y, col):
self.framebuf.pixel(x, y, col)
def scroll(self, dx, dy):
self.framebuf.scroll(dx, dy)
def text(self, string, x, y, col=1):
self.framebuf.text(string, x, y, col)
class SSD1306_I2C(SSD1306):
def __init__(self, width, height, i2c, addr=0x3c, external_vcc=False):
self.i2c = i2c
self.addr = addr
self.temp = bytearray(2)
# Add an extra byte to the data buffer to hold an I2C data/command byte
# to use hardware-compatible I2C transactions. A memoryview of the
# buffer is used to mask this byte from the framebuffer operations
# (without a major memory hit as memoryview doesn't copy to a separate
# buffer).
self.buffer = bytearray(((height // 8) * width) + 1)
self.buffer[0] = 0x40 # Set first byte of data buffer to Co=0, D/C=1
self.framebuf = framebuf.FrameBuffer1(memoryview(self.buffer)[1:], width, height)
super().__init__(width, height, external_vcc)
def write_cmd(self, cmd):
self.temp[0] = 0x80 # Co=1, D/C#=0
self.temp[1] = cmd
self.i2c.writeto(self.addr, self.temp)
def write_framebuf(self):
# Blast out the frame buffer using a single I2C transaction to support
# hardware I2C interfaces.
self.i2c.writeto(self.addr, self.buffer)
def poweron(self):
pass
class SSD1306_SPI(SSD1306):
def __init__(self, width, height, spi, dc, res, cs, external_vcc=False):
self.rate = 10 * 1024 * 1024
dc.init(dc.OUT, value=0)
res.init(res.OUT, value=0)
cs.init(cs.OUT, value=1)
self.spi = spi
self.dc = dc
self.res = res
self.cs = cs
self.buffer = bytearray((height // 8) * width)
self.framebuf = framebuf.FrameBuffer1(self.buffer, width, height)
super().__init__(width, height, external_vcc)
def write_cmd(self, cmd):
self.spi.init(baudrate=self.rate, polarity=0, phase=0)
self.cs.high()
self.dc.low()
self.cs.low()
self.spi.write(bytearray([cmd]))
self.cs.high()
def write_framebuf(self):
self.spi.init(baudrate=self.rate, polarity=0, phase=0)
self.cs.high()
self.dc.high()
self.cs.low()
self.spi.write(self.buffer)
self.cs.high()
def poweron(self):
self.res.high()
time.sleep_ms(1)
self.res.low()
time.sleep_ms(10)
self.res.high()
dt22.py
from machine import Pin
import time
class DHT22():
def __init__(self, dht_pin):
self.dht = Pin(dht_pin, Pin.OPEN_DRAIN, Pin.PULL_UP)
def start(self):
self.dht(0)
time.sleep_ms(2)
self.dht(1)
while 1:
if self.dht.value() == 0:
break
while 1:
if self.dht.value() == 1:
break
while 1:
if self.dht.value() == 0:
break
def read_bytes(self, dataread):
byteread = 0
self.start()
for j in range(5):
for i in range(8):
while 1:
if self.dht.value() == 1:
break
time.sleep_us(30)
if self.dht.value():
flag = 1
while 1:
if self.dht.value() == 0:
break
else:
flag = 0
byteread <<= 1
byteread |= flag
dataread[j] = byteread
byteread = 0
效果:
网页展示效果,请查看如下链接:
Wokwi Arduino and ESP32 Simulatorhttps://wokwi.com/projects/341962681824051794