import matplotlib.pyplot as plt import numpy from matplotlib.pyplot import MultipleLocator import os import numpy as np import pandas as pd import sys plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False ################################ 1、修改路径 'r', encoding='utf-8' df_1 = pd.read_csv('G:/Px-OUTPUT/train-seg/xx/results.csv') # ###################### 2、修改对应自己的训练总epoch数(对应下面x坐标) epoch_nums = 100 # 将.csv读取的表格数据以列于行形式转成列表,此时的维度为(0, ) list_AP_mask = df_1.iloc[:-1, -8].to_list() print(list_AP_mask) # 将列表转为numpy数组形式,并更改与x等同的维度为(100, ) T = np.array(list_AP_mask) T = T.reshape(100,) print(T.shape) #sys.exit() # list_P_box = [] # list_R_box = [] # list_mAP50_box = [] # list_AP_box = [] # # list_P_mask = [] # list_R_mask = [] list_AP_mask = [] # list_mAP50_mask = [] plt.rc('font', family='Times New Roman', size=15) # 全局中英文为字体“罗马字体” plt.rcParams['xtick.direction'] = 'in' plt.rcParams['ytick.direction'] = 'in' x = np.arange(0, 100, 1) print(x.shape) plt.xlim(0, 100) plt.ylim(0, 0.35) plt.plot(x, T, linewidth=3, label="AP(IOU=0.5:0.95)") plt.xlim(0, 100) # 把x轴的刻度间隔设置为10,并存在变量里 ############################### 设置坐标轴间隔 x_major_locator = MultipleLocator(10) ax = plt.gca() ax.xaxis.set_major_locator(x_major_locator) # y_major_locator = MultipleLocator(10) # ay = plt.gca() # ay.xaxis.set_major_locator(y_major_locator) plt.xlabel('Epoch') plt.ylabel('Precision') plt.grid(True) plt.legend(loc="lower right") # plt.legend(loc="upper left") plt.show()
E:\myprogram\anaconda\envs\python3.6\python.exe E:/xxx/xx/read_csv.py
[0.027732999999999997, 0.043930000000000004, 0.076258, 0.09657400000000001, 0.10355, 0.12327, 0.12332, 0.14339000000000002, 0.1381, 0.15563, 0.15955999999999998, 0.18033, 0.17088, 0.18822, 0.17684, 0.19351, 0.19538, 0.18424000000000001, 0.19119, 0.20776, 0.20529, 0.20817, 0.21753000000000003, 0.21278000000000002, 0.22803, 0.22714, 0.22995, 0.2274, 0.23564000000000002, 0.2447, 0.24164000000000002, 0.24648, 0.24959, 0.25674, 0.25066, 0.25248000000000004, 0.24323000000000003, 0.24770999999999999, 0.25461999999999996, 0.25793, 0.24966999999999998, 0.25883, 0.25345, 0.26056, 0.26711999999999997, 0.26764, 0.26607, 0.26988, 0.27003, 0.27007, 0.27265, 0.26886, 0.2754, 0.27551, 0.28046, 0.2869, 0.27865, 0.27926999999999996, 0.28401, 0.27218000000000003, 0.28037, 0.28009, 0.28194, 0.28404, 0.28476, 0.28724, 0.28474, 0.28733000000000003, 0.28386999999999996, 0.29066, 0.28081, 0.29454, 0.29118, 0.28915, 0.29177, 0.29219, 0.292, 0.28731, 0.28829, 0.29073000000000004, 0.2899, 0.29514, 0.29793000000000003, 0.29234, 0.30144, 0.29134, 0.29718, 0.2987, 0.30075, 0.29709, 0.29002, 0.29341999999999996, 0.29591999999999996, 0.30126, 0.30104000000000003, 0.304, 0.2965, 0.2991, 0.2962, 0.29769]
(100,)
(100,)
Process finished with exit code 0