SQL练习02

1.买下所有产品的客户

SQL

Create table If Not Exists Customer (customer_id int, product_key int);
Create table Product (product_key int);
Truncate table Customer;
insert into Customer (customer_id, product_key) values ('1', '5');
insert into Customer (customer_id, product_key) values ('2', '6');
insert into Customer (customer_id, product_key) values ('3', '5');
insert into Customer (customer_id, product_key) values ('3', '6');
insert into Customer (customer_id, product_key) values ('1', '6');
Truncate table Product;
insert into Product (product_key) values ('5');
insert into Product (product_key) values ('6');

Customer 表:

+-------------+---------+
| Column Name | Type    |
+-------------+---------+
| customer_id | int     |
| product_key | int     |
+-------------+---------+
该表可能包含重复的行。
customer_id 不为 NULL。
product_key 是 Product 表的外键(reference 列)。

Product 表:

+-------------+---------+
| Column Name | Type    |
+-------------+---------+
| product_key | int     |
+-------------+---------+
product_key 是这张表的主键(具有唯一值的列)。

编写解决方案,报告 Customer 表中购买了 Product 表中所有产品的客户的 id。

返回结果表 无顺序要求

返回结果格式如下所示。

示例 1:

输入:
Customer 表:
+-------------+-------------+
| customer_id | product_key |
+-------------+-------------+
| 1           | 5           |
| 2           | 6           |
| 3           | 5           |
| 3           | 6           |
| 1           | 6           |
+-------------+-------------+
Product 表:
+-------------+
| product_key |
+-------------+
| 5           |
| 6           |
+-------------+
输出:
+-------------+
| customer_id |
+-------------+
| 1           |
| 3           |
+-------------+
解释:
购买了所有产品(56)的客户的 id 是 13

思路

这里有些取巧了
1.首先会过滤掉Customer表中不在Product表中的product_key,
2.然后再进行分组和计数,保证每个客户购买的产品种类数量等于Product表中产品的总数,从而得到符合条件的客户的customer_id

题解

select distinct customer_id
from Customer
group by customer_id
having count(distinct product_key) = (select count(*) from Product)

2.产品销售分析

SQL

Create table If Not Exists Sales (sale_id int, product_id int, year int, quantity int, price int);
Create table If Not Exists Product (product_id int, product_name varchar(10));
Truncate table Sales;
insert into Sales (sale_id, product_id, year, quantity, price) values ('1', '100', '2008', '10', '5000');
insert into Sales (sale_id, product_id, year, quantity, price) values ('2', '100', '2009', '12', '5000');
insert into Sales (sale_id, product_id, year, quantity, price) values ('7', '200', '2011', '15', '9000');
Truncate table Product;
insert into Product (product_id, product_name) values ('100', 'Nokia');
insert into Product (product_id, product_name) values ('200', 'Apple');
insert into Product (product_id, product_name) values ('300', 'Samsung');

销售表 Sales

+-------------+-------+
| Column Name | Type  |
+-------------+-------+
| sale_id     | int   |
| product_id  | int   |
| year        | int   |
| quantity    | int   |
| price       | int   |
+-------------+-------+
(sale_id, year) 是这张表的主键(具有唯一值的列的组合)。
product_id 是产品表的外键(reference 列)。
这张表的每一行都表示:编号 product_id 的产品在某一年的销售额。
请注意,价格是按每单位计的。

产品表 Product

+--------------+---------+
| Column Name  | Type    |
+--------------+---------+
| product_id   | int     |
| product_name | varchar |
+--------------+---------+
product_id 是这张表的主键(具有唯一值的列)。
这张表的每一行都标识:每个产品的 id 和 产品名称。

编写解决方案,选出每个售出过的产品 第一年 销售的 产品 id年份数量价格

结果表中的条目可以按 任意顺序 排列。

结果格式如下例所示:

示例 1:

输入:
Sales 表:
+---------+------------+------+----------+-------+
| sale_id | product_id | year | quantity | price |
+---------+------------+------+----------+-------+ 
| 1       | 100        | 2008 | 10       | 5000  |
| 2       | 100        | 2009 | 12       | 5000  |
| 7       | 200        | 2011 | 15       | 9000  |
+---------+------------+------+----------+-------+
Product 表:
+------------+--------------+
| product_id | product_name |
+------------+--------------+
| 100        | Nokia        |
| 200        | Apple        |
| 300        | Samsung      |
+------------+--------------+
输出:
+------------+------------+----------+-------+
| product_id | first_year | quantity | price |
+------------+------------+----------+-------+ 
| 100        | 2008       | 10       | 5000  |
| 200        | 2011       | 15       | 9000  |
+------------+------------+----------+-------+

说明:
根据题意,选出每个售出过的产品 第一年销售的产品id、年份、数量和价格。

SQL练习02_第1张图片

编号 1和编号8都应该显示

思路

1.筛选最小年份的产品id、年份
2.使用group by product_id 分组,min()函数获取最小年份数据 表a
3.Sales表 in 表a

题解

方式一:
select product_id ,year first_year,quantity,price
from Sales
where (product_id,`year`) in
(
    -- 获取第一年的产品
    select product_id,min(year) year
    from Sales 
    group by product_id
);

方式二:
select product_id, year as first_year, quantity, price
from(
  select *, rank() over (partition by product_id order by year) as rk
  from Sales
) t1
where t1.rk = 1

3.市场分析

SQL

Create table If Not Exists Users (user_id int, join_date date, favorite_brand varchar(10));
Create table If Not Exists Orders (order_id int, order_date date, item_id int, buyer_id int, seller_id int);
Create table If Not Exists Items (item_id int, item_brand varchar(10));
Truncate table Users;
insert into Users (user_id, join_date, favorite_brand) values ('1', '2018-01-01', 'Lenovo');
insert into Users (user_id, join_date, favorite_brand) values ('2', '2018-02-09', 'Samsung');
insert into Users (user_id, join_date, favorite_brand) values ('3', '2018-01-19', 'LG');
insert into Users (user_id, join_date, favorite_brand) values ('4', '2018-05-21', 'HP');
Truncate table Orders;
insert into Orders (order_id, order_date, item_id, buyer_id, seller_id) values ('1', '2019-08-01', '4', '1', '2');
insert into Orders (order_id, order_date, item_id, buyer_id, seller_id) values ('2', '2018-08-02', '2', '1', '3');
insert into Orders (order_id, order_date, item_id, buyer_id, seller_id) values ('3', '2019-08-03', '3', '2', '3');
insert into Orders (order_id, order_date, item_id, buyer_id, seller_id) values ('4', '2018-08-04', '1', '4', '2');
insert into Orders (order_id, order_date, item_id, buyer_id, seller_id) values ('5', '2018-08-04', '1', '3', '4');
insert into Orders (order_id, order_date, item_id, buyer_id, seller_id) values ('6', '2019-08-05', '2', '2', '4');
Truncate table Items;
insert into Items (item_id, item_brand) values ('1', 'Samsung');
insert into Items (item_id, item_brand) values ('2', 'Lenovo');
insert into Items (item_id, item_brand) values ('3', 'LG');
insert into Items (item_id, item_brand) values ('4', 'HP');

表: Users

+----------------+---------+
| Column Name    | Type    |
+----------------+---------+
| user_id        | int     |
| join_date      | date    |
| favorite_brand | varchar |
+----------------+---------+
user_id 是此表主键(具有唯一值的列)。
表中描述了购物网站的用户信息,用户可以在此网站上进行商品买卖。

表: Orders

+---------------+---------+
| Column Name   | Type    |
+---------------+---------+
| order_id      | int     |
| order_date    | date    |
| item_id       | int     |
| buyer_id      | int     |
| seller_id     | int     |
+---------------+---------+
order_id 是此表主键(具有唯一值的列)。
item_id 是 Items 表的外键(reference 列)。
(buyer_id,seller_id)是 User 表的外键。

表:Items

+---------------+---------+
| Column Name   | Type    |
+---------------+---------+
| item_id       | int     |
| item_brand    | varchar |
+---------------+---------+
item_id 是此表的主键(具有唯一值的列)。

编写解决方案找出每个用户的注册日期和在 2019 年作为买家的订单总数。

任意顺序 返回结果表。

查询结果格式如下。

示例 1:

输入:
Users 表:
+---------+------------+----------------+
| user_id | join_date  | favorite_brand |
+---------+------------+----------------+
| 1       | 2018-01-01 | Lenovo         |
| 2       | 2018-02-09 | Samsung        |
| 3       | 2018-01-19 | LG             |
| 4       | 2018-05-21 | HP             |
+---------+------------+----------------+
Orders 表:
+----------+------------+---------+----------+-----------+
| order_id | order_date | item_id | buyer_id | seller_id |
+----------+------------+---------+----------+-----------+
| 1        | 2019-08-01 | 4       | 1        | 2         |
| 2        | 2018-08-02 | 2       | 1        | 3         |
| 3        | 2019-08-03 | 3       | 2        | 3         |
| 4        | 2018-08-04 | 1       | 4        | 2         |
| 5        | 2018-08-04 | 1       | 3        | 4         |
| 6        | 2019-08-05 | 2       | 2        | 4         |
+----------+------------+---------+----------+-----------+
Items 表:
+---------+------------+
| item_id | item_brand |
+---------+------------+
| 1       | Samsung    |
| 2       | Lenovo     |
| 3       | LG         |
| 4       | HP         |
+---------+------------+
输出:
+-----------+------------+----------------+
| buyer_id  | join_date  | orders_in_2019 |
+-----------+------------+----------------+
| 1         | 2018-01-01 | 1              |
| 2         | 2018-02-09 | 2              |
| 3         | 2018-01-19 | 0              |
| 4         | 2018-05-21 | 0              |
+-----------+------------+----------------+

思路

1.筛选order表中2019年的数据
2.连接user3.group by user_id 进行分组
4.根据count(buyer_id)统计订单数量

题解

select user_id buyer_id ,join_date,count(buyer_id) orders_in_2019
from 
(
	select *
	from Users u
	left join Orders o
	on u.user_id=o.buyer_id and date_format(o.order_date,"%Y")='2019'
)t
group by user_id

4.指定日期的产品价格

SQL

Create table If Not Exists Products (product_id int, new_price int, change_date date);
Truncate table Products;
INSERT INTO `ry`.`products` (`product_id`, `new_price`, `change_date`) VALUES (1, 20, '2019-08-14');
INSERT INTO `ry`.`products` (`product_id`, `new_price`, `change_date`) VALUES (2, 50, '2019-08-14');
INSERT INTO `ry`.`products` (`product_id`, `new_price`, `change_date`) VALUES (1, 30, '2019-08-15');
INSERT INTO `ry`.`products` (`product_id`, `new_price`, `change_date`) VALUES (1, 35, '2019-08-16');
INSERT INTO `ry`.`products` (`product_id`, `new_price`, `change_date`) VALUES (2, 65, '2019-08-17');
INSERT INTO `ry`.`products` (`product_id`, `new_price`, `change_date`) VALUES (3, 20, '2019-08-18');
INSERT INTO `ry`.`products` (`product_id`, `new_price`, `change_date`) VALUES (1, 25, '2019-08-16');

产品数据表: Products

+---------------+---------+
| Column Name   | Type    |
+---------------+---------+
| product_id    | int     |
| new_price     | int     |
| change_date   | date    |
+---------------+---------+
(product_id, change_date) 是此表的主键(具有唯一值的列组合)。
这张表的每一行分别记录了 某产品 在某个日期 更改后 的新价格。

编写一个解决方案,找出在 2019-08-16 时全部产品的价格,假设所有产品在修改前的价格都是 10

任意顺序 返回结果表。

结果格式如下例所示。

示例 1:

输入:
Products 表:
+------------+-----------+-------------+
| product_id | new_price | change_date |
+------------+-----------+-------------+
| 1          | 20        | 2019-08-14  |
| 2          | 50        | 2019-08-14  |
| 1          | 30        | 2019-08-15  |
| 1          | 35        | 2019-08-16  |
| 2          | 65        | 2019-08-17  |
| 3          | 20        | 2019-08-18  |
+------------+-----------+-------------+
输出:
+------------+-------+
| product_id | price |
+------------+-------+
| 2          | 50    |
| 1          | 35    |
| 1          | 25    |
| 3          | 10    |
+------------+-------+

思路

1.根据条件查询`2019-08-16` 时全部产品的产品id,日期
2.where change_date <= '2019-08-16' 筛选
3.利用产品id分组 group by product_id
4.max(change_date)获取最近日期
5.使用子查询获取对应价格
6.连接一个只有产品id的表,获取之前没有的产品价格,设置为10

题解

方式一:
select p1.product_id, ifnull(p2.new_price, 10) as price
from (
    select distinct product_id
    from products
) as p1 -- 所有的产品
left join (
    select product_id, new_price 
    from products
    where (product_id, change_date) in (
        select product_id, max(change_date)
        from products
        where change_date <= '2019-08-16'
        group by product_id
    )
) as p2 -- 在 2019-08-16 之前有过修改的产品和最新的价格
on p1.product_id = p2.product_id

方式二:
SELECT DISTINCT product_id, IF(filter_date IS NULL, 10, new_price) AS price
FROM (
  SELECT *, RANK() OVER(PARTITION BY product_id ORDER BY filter_date DESC) AS RANKING
  FROM (
    SELECT *, IF(change_date > '2019-08-16', NULL, change_date) AS filter_date
    FROM Products
  ) T
) TT
WHERE TT.RANKING = 1

方式三:(这里我的数据测试是可以的,但是显示不通过。仅供参考)
SELECT   product_id,price
FROM
	(
	SELECT
		product_id,
		rank() over ( PARTITION BY product_id ORDER BY cur_date desc) AS rk,
	IF
		( isnull( cur_date ), '10', new_price ) price 
	FROM
		( SELECT product_id, new_price, change_date, IF ( change_date > '2019-08-16', NULL, change_date ) AS cur_date FROM Products ) t1 
	)t
where rk=1

5.即时食物配送

SQL

Create table If Not Exists Delivery (delivery_id int, customer_id int, order_date date, customer_pref_delivery_date date);
Truncate table Delivery;
insert into Delivery (delivery_id, customer_id, order_date, customer_pref_delivery_date) values ('1', '1', '2019-08-01', '2019-08-02');
insert into Delivery (delivery_id, customer_id, order_date, customer_pref_delivery_date) values ('2', '2', '2019-08-02', '2019-08-02');
insert into Delivery (delivery_id, customer_id, order_date, customer_pref_delivery_date) values ('3', '1', '2019-08-11', '2019-08-12');
insert into Delivery (delivery_id, customer_id, order_date, customer_pref_delivery_date) values ('4', '3', '2019-08-24', '2019-08-24');
insert into Delivery (delivery_id, customer_id, order_date, customer_pref_delivery_date) values ('5', '3', '2019-08-21', '2019-08-22');
insert into Delivery (delivery_id, customer_id, order_date, customer_pref_delivery_date) values ('6', '2', '2019-08-11', '2019-08-13');
insert into Delivery (delivery_id, customer_id, order_date, customer_pref_delivery_date) values ('7', '4', '2019-08-09', '2019-08-09');

配送表: Delivery

+-----------------------------+---------+
| Column Name                 | Type    |
+-----------------------------+---------+
| delivery_id                 | int     |
| customer_id                 | int     |
| order_date                  | date    |
| customer_pref_delivery_date | date    |
+-----------------------------+---------+
delivery_id 是该表中具有唯一值的列。
该表保存着顾客的食物配送信息,顾客在某个日期下了订单,并指定了一个期望的配送日期(和下单日期相同或者在那之后)。

如果顾客期望的配送日期和下单日期相同,则该订单称为 「即时订单」,否则称为「计划订单」。

首次订单」是顾客最早创建的订单。我们保证一个顾客只会有一个「首次订单」。

编写解决方案以获取即时订单在所有用户的首次订单中的比例。保留两位小数。

结果示例如下所示:

示例 1:

输入:
Delivery 表:
+-------------+-------------+------------+-----------------------------+
| delivery_id | customer_id | order_date | customer_pref_delivery_date |
+-------------+-------------+------------+-----------------------------+
| 1           | 1           | 2019-08-01 | 2019-08-02                  |
| 2           | 2           | 2019-08-02 | 2019-08-02                  |
| 3           | 1           | 2019-08-11 | 2019-08-12                  |
| 4           | 3           | 2019-08-24 | 2019-08-24                  |
| 5           | 3           | 2019-08-21 | 2019-08-22                  |
| 6           | 2           | 2019-08-11 | 2019-08-13                  |
| 7           | 4           | 2019-08-09 | 2019-08-09                  |
+-------------+-------------+------------+-----------------------------+
输出:
+----------------------+
| immediate_percentage |
+----------------------+
| 50.00                |
+----------------------+
解释:
1 号顾客的 1 号订单是首次订单,并且是计划订单。
2 号顾客的 2 号订单是首次订单,并且是即时订单。
3 号顾客的 5 号订单是首次订单,并且是计划订单。
4 号顾客的 7 号订单是首次订单,并且是即时订单。
因此,一半顾客的首次订单是即时的。

思路

1.获取客户首次出现的订单 rank()函数排序
2.根据order_date和customer_pref_delivery_date是否相等判断是计划订单还是即时订单

题解

方式一:
select  round((sum(immediate)/count(*))*100,2) immediate_percentage
from 
(
	select if(order_date=customer_pref_delivery_date,1,0)immediate,rank()over(partition by customer_id order by order_date) rk
	from Delivery
)t
where rk=1

你可能感兴趣的:(sql,数据库,java)