W...Y的主页
代码仓库分享
前言:
我们学习了STL中的string以及其所有重要接口并进行了模拟实现,但是STL中包含的内容不止于此。学习了string之后继续学习STL中的vector,学习成本会大大降低,因为他们非现类似,现在就让我们进入vector的世界中吧!
目录
vector的介绍及使用
vector的介绍
vector的使用
vector的定义
vector iterator 的使用
vector 空间增长问题
vector 增删查改
编辑
vector的深度剖析以及模拟实现
vector类的创建以及构造函数与析构函数
迭代器相关模拟实现
容量相关模拟实现
元素访问相关模拟实现
vector的修改操作模拟实现
vector 迭代器失效问题
赋值重载函数的模拟
1. vector是表示可变大小数组的序列容器。
2. 就像数组一样,vector也采用的连续存储空间来存储元素。也就是意味着可以采用下标对vector的元素进行访问,和数组一样高效。但是又不像数组,它的大小是可以动态改变的,而且它的大小会被容器自动处理。
3. 本质讲,vector使用动态分配数组来存储它的元素。当新元素插入时候,这个数组需要被重新分配大小为了增加存储空间。其做法是,分配一个新的数组,然后将全部元素移到这个数组。就时间而言,这是一个相对代价高的任务,因为每当一个新的元素加入到容器的时候,vector并不会每次都重新分配大小。
4. vector分配空间策略:vector会分配一些额外的空间以适应可能的增长,因为存储空间比实际需要的存储空间更大。不同的库采用不同的策略权衡空间的使用和重新分配。但是无论如何,重新分配都应该是对数增长的间隔大小,以至于在末尾插入一个元素的时候是在常数时间的复杂度完成的。
5. 因此,vector占用了更多的存储空间,为了获得管理存储空间的能力,并且以一种有效的方式动态增长。
6. 与其它动态序列容器相比(deque, list and forward_list), vector在访问元素的时候更加高效,在末尾添加和删除元素相对高效。对于其它不在末尾的删除和插入操作,效率更低。比起list和forward_list统一的迭代器和引用更好。
vector学习时一定要学会查看文档:vector的文档介绍,vector在实际中非常的重要,在实际中我们熟悉常见的接口就可以,下面列出了哪些接口是要重点掌握的。
(constructor)构造函数声明 | 接口说明 |
vector()(重点) | 无参构造 |
vector(size_type n, const value_type& val = value_type()) | 构造并初始化n个val |
vector (const vector& x); (重点) | 拷贝构造 |
vector (InputIterator first, InputIterator last); | 使用迭代器进行初始化构造 |
这些vector定义参数全都是被typedef的内容,我们应该了解每个参数的含义: 下面演示以下如何使用构造函数与拷贝构造函数:
#define _CRT_SECURE_NO_WARNINGS
#include
using namespace std;
#include
// vector的构造
int TestVector1()
{
// constructors used in the same order as described above:
vector first; // empty vector of ints
vector second(4, 100); // four ints with value 100
vector third(second.begin(), second.end()); // iterating through second
vector fourth(third); // a copy of third
// 下面涉及迭代器初始化的部分,我们学习完迭代器再来看这部分
// the iterator constructor can also be used to construct from arrays:
int myints[] = { 16,2,77,29 };
vector fifth(myints, myints + sizeof(myints) / sizeof(int));
cout << "The contents of fifth are:";
for (vector::iterator it = fifth.begin(); it != fifth.end(); ++it)
cout << ' ' << *it;
cout << '\n';
return 0;
}
这里要强调一下迭代器构造函数,我们一般看到的类型是iterator类型的,而模板这里的模板参数给予的是inputiterator,并且给与class模板:
迭代器也是分类型的,不仅仅只有string、vector迭代器,还有其他的迭代器。所以我们可以传入不同的迭代器对vector进行初始化操作。数组就是一个非常好的例子,在上述例子中我们也体现出不同迭代器对vector的初始化。
iterator的使用 | 接口说明 |
begin +end(重点) | 获取第一个数据位置的iterator/const_iterator, 获取最后一个数据的下一个位置 的iterator/const_iterator |
rbegin + rend | 获取最后一个数据位置的reverse_iterator,获取第一个数据前一个位置的 reverse_iterator |
迭代器都是左闭右开的区间。
void PrintVector(const vector& v)
{
// const对象使用const迭代器进行遍历打印
vector::const_iterator it = v.begin();
while (it != v.end())
{
cout << *it << " ";
++it;
}
cout << endl;
}
void TestVector2()
{
// 使用push_back插入4个数据
vector v;
v.push_back(1);
v.push_back(2);
v.push_back(3);
v.push_back(4);
// 使用迭代器进行遍历打印
vector::iterator it = v.begin();
while (it != v.end())
{
cout << *it << " ";
++it;
}
cout << endl;
// 使用迭代器进行修改
it = v.begin();
while (it != v.end())
{
*it *= 2;
++it;
}
// 使用反向迭代器进行遍历再打印
// vector::reverse_iterator rit = v.rbegin();
auto rit = v.rbegin();
while (rit != v.rend())
{
cout << *rit << " ";
++rit;
}
cout << endl;
PrintVector(v);
}
上述代码我们使用迭代器对vector进行了正向与反向的遍历打印,很好的说明了迭代器的使用。我们也可以使用[]重载进行遍历,但这里我们不推荐使用,因为下标访问对底层逻辑是数组的可以进行访问,但是在后面的链表、树中就不能了,我们要尽早习惯使用迭代器。
容量空间 | 接口说明 |
size | 获取数据个数 |
capacity | 获取容量大小 |
empty | 判断是否为空 |
resize | 改变vector的size |
reserve | 改变vector的capacity |
vector这些接口与string是一模一样,只要学会使用string的接口vector的这些接口也不再话下:
void TestVector3()
{
vector v;
// set some initial content:
for (int i = 1; i < 10; i++)
v.push_back(i);
v.resize(5);
v.resize(8, 100);
v.resize(12);
cout << "v contains:";
for (size_t i = 0; i < v.size(); i++)
cout << ' ' << v[i];
cout << '\n';
}
// 测试vector的默认扩容机制
// vs:按照1.5倍方式扩容
// linux:按照2倍方式扩容
void TestVectorExpand()
{
size_t sz;
vector v;
sz = v.capacity();
cout << "making v grow:\n";
for (int i = 0; i < 100; ++i)
{
v.push_back(i);
if (sz != v.capacity())
{
sz = v.capacity();
cout << "capacity changed: " << sz << '\n';
}
}
}
// 往vecotr中插入元素时,如果大概已经知道要存放多少个元素
// 可以通过reserve方法提前将容量设置好,避免边插入边扩容效率低
void TestVectorExpandOP()
{
vector v;
size_t sz = v.capacity();
v.reserve(100); // 提前将容量设置好,可以避免一遍插入一遍扩容
cout << "making bar grow:\n";
for (int i = 0; i < 100; ++i)
{
v.push_back(i);
if (sz != v.capacity())
{
sz = v.capacity();
cout << "capacity changed: " << sz << '\n';
}
}
}
vector的扩容与string的扩容机制是一样的,都是vs下是1.5倍扩容增长,Linux下是2倍增长。
vector中有一个函数接口我们可以有所了解,这个函数是用来缩容的。如果size的大小为8,而capacity的大小为80,我们可以使用shrink_to_fit函数进行缩容。但是我们不建议缩容,因为会进行空间的深拷贝以及析构。有所了解即可。
注意:reserve只负责开辟空间,如果确定知道需要用多少空间,reserve可以缓解vector增容的代价缺陷问题。resize在开空间的同时还会进行初始化,影响size。
vector增删查改 | 接口说明 |
push_back |
尾插 |
pop_back | 尾删 |
find | 查找。(注意这个是算法模块实现,不是vector的成员接口) |
insert | 在position之前插入val |
erase | 删除position位置的数据 |
swap | 交换两个vector的数据空间 |
operator[] | 像数组一样访问 |
insert与erase中与string有区别,在string中支持使用下标进行访问,而在vector中只支持迭代器进行访问。
find查找函数在vector中是没有的,而包含在algorithm头文件中
这样我们每次使用find都必须包含算法头文件,但是find函数是一个模板函数,所以只要是迭代器无论是什么类型的都可以进行复用!!!
剩下的接口与string是一样的,使用起来非常简单,下面是演示代码:
// 尾插和尾删:push_back/pop_back
void TestVector4()
{
vector v;
v.push_back(1);
v.push_back(2);
v.push_back(3);
v.push_back(4);
auto it = v.begin();
while (it != v.end())
{
cout << *it << " ";
++it;
}
cout << endl;
v.pop_back();
v.pop_back();
it = v.begin();
while (it != v.end())
{
cout << *it << " ";
++it;
}
cout << endl;
}
// 任意位置插入:insert和erase,以及查找find
// 注意find不是vector自身提供的方法,是STL提供的算法
void TestVector5()
{
// 使用列表方式初始化,C++11新语法
vector v{ 1, 2, 3, 4 };
// 在指定位置前插入值为val的元素,比如:3之前插入30,如果没有则不插入
// 1. 先使用find查找3所在位置
// 注意:vector没有提供find方法,如果要查找只能使用STL提供的全局find
auto pos = find(v.begin(), v.end(), 3);
if (pos != v.end())
{
// 2. 在pos位置之前插入30
v.insert(pos, 30);
}
vector::iterator it = v.begin();
while (it != v.end())
{
cout << *it << " ";
++it;
}
cout << endl;
pos = find(v.begin(), v.end(), 3);
// 删除pos位置的数据
v.erase(pos);
it = v.begin();
while (it != v.end()) {
cout << *it << " ";
++it;
}
cout << endl;
}
// operator[]+index 和 C++11中vector的新式for+auto的遍历
// vector使用这两种遍历方式是比较便捷的。
void TestVector6()
{
vector v{ 1, 2, 3, 4 };
// 通过[]读写第0个位置。
v[0] = 10;
cout << v[0] << endl;
// 1. 使用for+[]小标方式遍历
for (size_t i = 0; i < v.size(); ++i)
cout << v[i] << " ";
cout << endl;
vector swapv;
swapv.swap(v);
cout << "v data:";
for (size_t i = 0; i < v.size(); ++i)
cout << v[i] << " ";
cout << endl;
// 2. 使用迭代器遍历
cout << "swapv data:";
auto it = swapv.begin();
while (it != swapv.end())
{
cout << *it << " ";
++it;
}
// 3. 使用范围for遍历
for (auto x : v)
cout << x << " ";
cout << endl;
}
要实现vector我们先要从STL中了解vector的底层逻辑。
上图就是vector在STL中的源代码,其中就有许多不知名的参数在vector中的使用我们也能看到,为了更好的理解,这些都是被typedef的。接下来我们可以看到类中的参数并不是我们以前学习到的T* tmp、int size以及int capacity,而是用三个指针进行的,分别是start、finish以及end_of_storage所体现的。
这三个指针分别代表着首指针,内容尾部指针以及空间尾部指针,与size、capacity有着密切的关联,这样说还不够明显,我们接着往下看。
vector中的size与capacity函数的源代码,就是将提供私有成员进行相减得到的大小。我们就可以理解其中的start、finish、end_of_storage的指向了。
其实大体的结构没有改变,只是使用指针去定义vector中的各种数据。
现在我们就可以进行vector的模拟实现了。
#pragma once
#include
using namespace std;
#include
namespace why
{
template
class vector
{
public:
// Vector的迭代器是一个原生指针
typedef T* iterator;
typedef const T* const_iterator;
///
// 构造和销毁
vector()
: _start(nullptr)
, _finish(nullptr)
, _endOfStorage(nullptr)
{}
vector(size_t n, const T& value = T())
: _start(nullptr)
, _finish(nullptr)
, _endOfStorage(nullptr)
{
reserve(n);
while (n--)
{
push_back(value);
}
}
/*
* 理论上将,提供了vector(size_t n, const T& value = T())之后
* vector(int n, const T& value = T())就不需要提供了,但是对于:
* vector v(10, 5);
* 编译器在编译时,认为T已经被实例化为int,而10和5编译器会默认其为int类型
* 就不会走vector(size_t n, const T& value = T())这个构造方法,
* 最终选择的是:vector(InputIterator first, InputIterator last)
* 因为编译器觉得区间构造两个参数类型一致,因此编译器就会将InputIterator实例化为int
* 但是10和5根本不是一个区间,编译时就报错了
* 故需要增加该构造方法
*/
vector(int n, const T& value = T())
: _start(new T[n])
, _finish(_start+n)
, _endOfStorage(_finish)
{
for (int i = 0; i < n; ++i)
{
_start[i] = value;
}
}
// 若使用iterator做迭代器,会导致初始化的迭代器区间[first,last)只能是vector的迭代器
// 重新声明迭代器,迭代器区间[first,last)可以是任意容器的迭代器
template
vector(InputIterator first, InputIterator last)
{
while (first != last)
{
push_back(*first);
++first;
}
}
~vector()
{
if (_start)
{
delete[] _start;
_start = _finish = _endOfStorage = nullptr;
}
}
//拷贝构造函数
vector(const vector& v)
: _start(nullptr)
, _finish(nullptr)
, _endOfStorage(nullptr)
{
reserve(v.capacity());
iterator it = begin();
const_iterator vit = v.cbegin();
while (vit != v.cend())
{
*it++ = *vit++;
}
_finish = it;
}
private:
iterator _start; // 指向数据块的开始
iterator _finish; // 指向有效数据的尾
iterator _endOfStorage; // 指向存储容量的尾
};
}
无参默认函数非常简单,而第二种构造函数是将一种类型的内容进行n个初始化,那为什么在模拟构造时要写两个此类函数构成重载吗?不是多此一举?
因为假如不写重载就会与第三个迭代器类模板冲突,因为我们传入的参数很可能是两个int类型的值,我们用户本意是将n个int类型的值进行初始化,但是两个int值会与更匹配的模板进行结合,导致非法间接寻址,所以我们必须要重载一个int型。
iterator begin()
{
return _start;
}
iterator end()
{
return _finish;
}
const_iterator cbegin() const
{
return _start;
}
const_iterator cend() const
{
return _finish;
}
size_t size() const
{
return _finish - _start;
}
size_t capacity() const
{
return _endOfStorage - _start;
}
bool empty() const
{
return _start == _finish;
}
void reserve(size_t n)
{
if (n > capacity())
{
size_t oldSize = size();
// 1. 开辟新空间
T* tmp = new T[n];
// 2. 拷贝元素
// 这里直接使用memcpy会有问题吗?同学们思考下
//if (_start)
// memcpy(tmp, _start, sizeof(T)*size);
if (_start)
{
for (size_t i = 0; i < oldSize; ++i)
tmp[i] = _start[i];
// 3. 释放旧空间
delete[] _start;
}
_start = tmp;
_finish = _start + oldSize;
_endOfStorage = _start + n;
}
}
void resize(size_t n, const T& value = T())
{
// 1.如果n小于当前的size,则数据个数缩小到n
if (n <= size())
{
_finish = _start + n;
return;
}
// 2.空间不够则增容
if (n > capacity())
reserve(n);
// 3.将size扩大到n
iterator it = _finish;
_finish = _start + n;
while (it != _finish)
{
*it = value;
++it;
}
}
reserve函数是扩容函数,在复用的时候肯定会遇到异地扩容的情况,所以我们必须进行深拷贝处理,使用memcpy可以解决一些普通变量的拷贝比如:int、double等等。但是面对复杂的内容就无法解决,所以我们必须使用赋值进行拷贝。
假设模拟实现的vector中的reserve接口中,使用memcpy进行的拷贝,以下代码会发生什么问题?
int main()
{
bite::vector v;
v.push_back("1111");
v.push_back("2222");
v.push_back("3333");
return 0;
}
问题分析:
1. memcpy是内存的二进制格式拷贝,将一段内存空间中内容原封不动的拷贝到另外一段内存空间中
2. 如果拷贝的是自定义类型的元素,memcpy既高效又不会出错,但如果拷贝的是自定义类型元素,并且自定义类型元素中涉及到资源管理时,就会出错,因为memcpy的拷贝实际是浅拷贝。
结论:如果对象中涉及到资源管理时,千万不能使用memcpy进行对象之间的拷贝,因为memcpy是浅拷贝,否则可能会引起内存泄漏甚至程序崩溃。
我们必须打好reserve的基础,这个扩容在后面的许多函数都必须要用,我们必须创建好。
resize的函数算法与string中的算法原理相同。
T& operator[](size_t pos)
{
assert(pos < size());
return _start[pos];
}
const T& operator[](size_t pos)const
{
assert(pos < size());
return _start[pos];
}
T& front()
{
return *_start;
}
const T& front()const
{
return *_start;
}
T& back()
{
return *(_finish - 1);
}
const T& back()const
{
return *(_finish - 1);
}
在不改变内容的情况下,我们必须考虑有const的,所以必须进行函数重载。
void push_back(const T& x)
{
insert(end(), x);
}
void pop_back()
{
erase(end() - 1);
}
void swap(vector& v)
{
std::swap(_start, v._start);
std::swap(_finish, v._finish);
std::swap(_endOfStorage, v._endOfStorage);
}
iterator insert(iterator pos, const T& x)
{
assert(pos <= _finish);
// 空间不够先进行增容
if (_finish == _endOfStorage)
{
//size_t size = size();
size_t newCapacity = (0 == capacity()) ? 1 : capacity() * 2;
reserve(newCapacity);
// 如果发生了增容,需要重置pos
pos = _start + size();
}
iterator end = _finish - 1;
while (end >= pos)
{
*(end + 1) = *end;
--end;
}
*pos = x;
++_finish;
return pos;
}
// 返回删除数据的下一个数据
// 方便解决:一边遍历一边删除的迭代器失效问题
iterator erase(iterator pos)
{
// 挪动数据进行删除
iterator begin = pos + 1;
while (begin != _finish) {
*(begin - 1) = *begin;
++begin;
}
--_finish;
return pos;
}
在创建insert与erase函数时,我们都会遇到一种问题,迭代器失效。
迭代器的主要作用就是让算法能够不用关心底层数据结构,其底层实际就是一个指针,或者是对指针进行了封装,比如:vector的迭代器就是原生态指针T* 。因此迭代器失效,实际就是迭代器底层对应指针所指向的空间被销毁了,而使用一块已经被释放的空间,造成的后果是程序崩溃(即如果继续使用已经失效的迭代器,程序可能会崩溃)。
对于vector可能会导致其迭代器失效的操作有:
1. 会引起其底层空间改变的操作,都有可能是迭代器失效,比如:resize、reserve、insert、assign、push_back等。
#include
using namespace std;
#include
int main()
{
vector v{1,2,3,4,5,6};
auto it = v.begin();
// 将有效元素个数增加到100个,多出的位置使用8填充,操作期间底层会扩容
// v.resize(100, 8);
// reserve的作用就是改变扩容大小但不改变有效元素个数,操作期间可能会引起底层容量改变
// v.reserve(100);
// 插入元素期间,可能会引起扩容,而导致原空间被释放
// v.insert(v.begin(), 0);
// v.push_back(8);
// 给vector重新赋值,可能会引起底层容量改变
v.assign(100, 8);
/*
出错原因:以上操作,都有可能会导致vector扩容,也就是说vector底层原理旧空间被释放掉,
而在打印时,it还使用的是释放之间的旧空间,在对it迭代器操作时,实际操作的是一块已经被释放的
空间,而引起代码运行时崩溃。
解决方式:在以上操作完成之后,如果想要继续通过迭代器操作vector中的元素,只需给it重新
赋值即可。
*/
while(it != v.end())
{
cout<< *it << " " ;
++it;
}
cout<
指定位置元素的删除操作--erase
#include
using namespace std;
#include
int main()
{
int a[] = { 1, 2, 3, 4 };
vector v(a, a + sizeof(a) / sizeof(int));
// 使用find查找3所在位置的iterator
vector::iterator pos = find(v.begin(), v.end(), 3);
// 删除pos位置的数据,导致pos迭代器失效。
v.erase(pos);
cout << *pos << endl; // 此处会导致非法访问
return 0;
}
erase删除pos位置元素后,pos位置之后的元素会往前搬移,没有导致底层空间的改变,理论上讲迭代器不应该会失效,但是:如果pos刚好是最后一个元素,删完之后pos刚好是end的位置,而end位置是没有元素的,那么pos就失效了。因此删除vector中任意位置上元素时,vs就认为该位置迭代器失效了。
Linux下,g++编译器对迭代器失效的检测并不是非常严格,处理也没有vs下极端。
迭代器失效解决办法:在使用前,对迭代器重新赋值即可。
void swap(vector& v)
{
std::swap(_start, v._start);
std::swap(_finish, v._finish);
std::swap(_endOfStorage, v._endOfStorage);
}
vector& operator=(vector v)
{
swap(v);
return *this;
}
我们可以偷个懒,将拷贝好的内容直接进行交换即可实现赋值的作用。
以上我们将vector与vector的模拟实现全部完成。相信大家看完这篇博客可以对vector有更深的理解。
创作不易,希望大家多多支持!!!