Flink源码学习二 用户代码逻辑计划生成 1.17分支

1、Streaming环境获取

 

接上节flink调用用户代码的main方法后,用户代码中一般会有如下获取flink环境的代码

val env = StreamExecutionEnvironment.getExecutionEnvironment

这里获取的环境再命令行客户的执行这个方法是就已经初始化好了,这个env里面封装了一些用户环境配置、streaming执行配置等。

//org/apache/flink/client/ClientUtils.java:66
public static void executeProgram(
            PipelineExecutorServiceLoader executorServiceLoader,
            Configuration configuration,
            PackagedProgram program,
            boolean enforceSingleJobExecution,
            boolean suppressSysout)
            throws ProgramInvocationException {
        checkNotNull(executorServiceLoader);
        final ClassLoader userCodeClassLoader = program.getUserCodeClassLoader();
        final ClassLoader contextClassLoader = Thread.currentThread().getContextClassLoader();
        try {
            Thread.currentThread().setContextClassLoader(userCodeClassLoader);
 
            LOG.info(
                    "Starting program (detached: {})",
                    !configuration.getBoolean(DeploymentOptions.ATTACHED));
 
            ContextEnvironment.setAsContext(
                    executorServiceLoader,
                    configuration,
                    userCodeClassLoader,
                    enforceSingleJobExecution,
                    suppressSysout);
 
            StreamContextEnvironment.setAsContext(
                    executorServiceLoader,
                    configuration,
                    userCodeClassLoader,
                    enforceSingleJobExecution,
                    suppressSysout);
 
            try {
                program.invokeInteractiveModeForExecution();
            } finally {
                ContextEnvironment.unsetAsContext();
                StreamContextEnvironment.unsetAsContext();
            }
        } finally {
            Thread.currentThread().setContextClassLoader(contextClassLoader);
        }
    }

2、DataStreamSource生成

DataStream是flink关于streaming的最核心抽象,它是从StreamExecutionEnvironment的addSource方法和fromSource两个方法生成。其中fromSource是新的api,下面分别进行介绍。

addSource方法会触发以下这段逻辑:

//org/apache/flink/streaming/api/environment/StreamExecutionEnvironment.java:1933
    private  DataStreamSource addSource(
            final SourceFunction function,
            final String sourceName,
            @Nullable final TypeInformation typeInfo,
            final Boundedness boundedness) {
        checkNotNull(function);
        checkNotNull(sourceName);
        checkNotNull(boundedness);

        TypeInformation resolvedTypeInfo =
                getTypeInfo(function, sourceName, SourceFunction.class, typeInfo);

        boolean isParallel = function instanceof ParallelSourceFunction;

        clean(function);

        final StreamSource sourceOperator = new StreamSource<>(function);
        return new DataStreamSource<>(
                this, resolvedTypeInfo, sourceOperator, isParallel, sourceName, boundedness);
    }

这里输入的SourceFunction就是用户代码自定义实现或调用数据源函数,如env.addSource(new FlinkKafkaConsumer11)

总结上述方法逻辑:

  • 根据用户传入的SourceFunction获取source的输出类型的TypeInformation封装。
    • flink会将所有streaming的输入输出类型封装成TypeInformation,其中基础类型数组类型的实现是BasicTypeInfo、BasicArrayTypeInfo,用户自定义的pojo类型会封装到GenericTypeInfo。
  • 把SourceFunction封装到sourceOperator中,这里是把SourceFunction封装成StreamSource。StreamSource是一个StreamOperator算子抽象,在flink中一个DataSream封装了一次数据流转换,一个StreamOperator封装了一个函数接口,如map、filter、sourcefunction等。可以看到StreamSource走的是如下一套接口体系,这命名很随意。。。

Flink源码学习二 用户代码逻辑计划生成 1.17分支_第1张图片

       其中用户的sourcefunction是封装在了AbstractUdfStreamOperator中

//org/apache/flink/streaming/api/operators/AbstractUdfStreamOperator.java:54    
    /** The user function. */
    protected final F userFunction;

    public AbstractUdfStreamOperator(F userFunction) {
        this.userFunction = requireNonNull(userFunction);
        checkUdfCheckpointingPreconditions();
    }
  • 生成DataStreamSource数据流。DataStreamSource的具体继承关系如下:

Flink源码学习二 用户代码逻辑计划生成 1.17分支_第2张图片  

//org/apache/flink/streaming/api/datastream/DataStreamSource.java:57
    /** The constructor used to create legacy sources. */
    public DataStreamSource(
            StreamExecutionEnvironment environment,
            TypeInformation outTypeInfo,
            StreamSource operator,
            boolean isParallel,
            String sourceName,
            Boundedness boundedness) {
        super(
                environment,
                new LegacySourceTransformation<>(
                        sourceName,
                        operator,
                        outTypeInfo,
                        environment.getParallelism(),
                        boundedness));

        this.isParallel = isParallel;
        if (!isParallel) {
            setParallelism(1);
        }
    }
  •  这里调用DataStreamSource的构造方法,注意这里的LegacySourceTransformation,它就是一次数据流转换的抽象,它封装了前面的StreamSource算子操作和流的并行度,它的继承体系如下:

Flink源码学习二 用户代码逻辑计划生成 1.17分支_第3张图片

  • 最后调用了父类DataStream的构造函数,把一次流转换操作封装到DataStream中。其具体代码如下: 
//org/apache/flink/streaming/api/datastream/DataStream.java:129   
    protected final StreamExecutionEnvironment environment;

    protected final Transformation transformation;

    /**
     * Create a new {@link DataStream} in the given execution environment with partitioning set to
     * forward by default.
     *
     * @param environment The StreamExecutionEnvironment
     */
    public DataStream(StreamExecutionEnvironment environment, Transformation transformation) {
        this.environment =
                Preconditions.checkNotNull(environment, "Execution Environment must not be null.");
        this.transformation =
                Preconditions.checkNotNull(
                        transformation, "Stream Transformation must not be null.");
    }
  • 至此DataStream生成,后续的数据流转换操作都在DataStream上面完成了。

freomSource方法会触发以下这段逻辑:

//org/apache/flink/streaming/api/environment/StreamExecutionEnvironment.java:1999
    public  DataStreamSource fromSource(
            Source source,
            WatermarkStrategy timestampsAndWatermarks,
            String sourceName,
            TypeInformation typeInfo) {

        final TypeInformation resolvedTypeInfo =
                getTypeInfo(source, sourceName, Source.class, typeInfo);

        return new DataStreamSource<>(
                this,
                checkNotNull(source, "source"),
                checkNotNull(timestampsAndWatermarks, "timestampsAndWatermarks"),
                checkNotNull(resolvedTypeInfo),
                checkNotNull(sourceName));
    }

fromSource是flink新的数据源生成方法,这里用户生成Souece和原来的SourceFunction不一样,走的是另外一套继承接口。

总结上述逻辑:

  • 获取source的输出类型的TypeInformation封装
  • 构建DataStreamSource流
    • 把source和水位线等标记封装到SourceTransformation中
    • 构建DataStream,把SourceTransformation赋值给这个流的Transformation

3、DataStream的转换操作

上一步从数据源中获取DataStram的抽象DataStreamSource后,后面所有的转换都会在DataStram上进行。

注意到StreamExecutionEnvironment在初始化的时候会构建一个List> transformations

//org/apache/flink/streaming/api/environment/StreamExecutionEnvironment.java:190
protected final List> transformations = new ArrayList<>();

每一次的DataStream流转换操作都会把当前的Transformation添加到算子列表 transformations 中(只有 转换 transform 转换操作才会添加算子,其它都只是暂时做了 transformation 的叠加封装)

下面以map函数 为例来介绍一次流转换操作。

//org/apache/flink/streaming/api/datastream/DataStream.java:592
    public  SingleOutputStreamOperator map(
            MapFunction mapper, TypeInformation outputType) {
        return transform("Map", outputType, new StreamMap<>(clean(mapper)));
    }
  • 可以看到一次map操作会触发transform函数
//org/apache/flink/streaming/api/datastream/DataStream.java:1180
    public  SingleOutputStreamOperator transform(
            String operatorName,
            TypeInformation outTypeInfo,
            OneInputStreamOperatorFactory operatorFactory) {

        return doTransform(operatorName, outTypeInfo, operatorFactory);
    }


//org/apache/flink/streaming/api/datastream/DataStream.java:1188
    protected  SingleOutputStreamOperator doTransform(
            String operatorName,
            TypeInformation outTypeInfo,
            StreamOperatorFactory operatorFactory) {

        // read the output type of the input Transform to coax out errors about MissingTypeInfo
        transformation.getOutputType();

        OneInputTransformation resultTransform =
                new OneInputTransformation<>(
                        this.transformation,
                        operatorName,
                        operatorFactory,
                        outTypeInfo,
                        environment.getParallelism());

        @SuppressWarnings({"unchecked", "rawtypes"})
        SingleOutputStreamOperator returnStream =
                new SingleOutputStreamOperator(environment, resultTransform);

        getExecutionEnvironment().addOperator(resultTransform);

        return returnStream;
    }
  • 可以看到transform会调用doTransform函数,总结其作用
    • 调用当前DataStram封装的transformation,获取它的输出类型,用来触发缺少输出类型的错误。
    • 将当前DataSteam的transformation和需要进行操作的算子转换成新的一次输入转换操作。这里的OneInputTransformation也是Transformation的抽象。它的两个泛型分别表示当前转换的输入和转换后的输出类型。
    • 最后将当前环境对象和新的transformation对象最为成员变量封装成另外一个新的DataStream对象并返回。这里注意只有需要transform的流才会生成新的DataStream算子。
  • 注意到这里的getExecutionEnvironment().addOperator(resultTransform) 操作,flink会将所有的transformation操作维护起来。
//org/apache/flink/streaming/api/environment/StreamExecutionEnvironment.java:2325
    public void addOperator(Transformation transformation) {
        Preconditions.checkNotNull(transformation, "transformation must not be null.");
        this.transformations.add(transformation);
    }
  • 由此可见,用户在DataStream上面执行的一系列操作,如map、filter等,实际上是在DataStream上做的转换,由flink将这些transformation操作维护了起来,一直到最后执行env.execute()方法StramGraph的构建才真正开始。

3、逻辑计划StreamGraph的生成

用户执行env.execute()后会触发以下逻辑:

//org/apache/flink/streaming/api/environment/StreamExecutionEnvironment.java:2041
    public JobExecutionResult execute(String jobName) throws Exception {
        final List> originalTransformations = new ArrayList<>(transformations);
        StreamGraph streamGraph = getStreamGraph();
        if (jobName != null) {
            streamGraph.setJobName(jobName);
        }

        try {
            return execute(streamGraph);
        } catch (Throwable t) {
            Optional clusterDatasetCorruptedException =
                    ExceptionUtils.findThrowable(t, ClusterDatasetCorruptedException.class);
            if (!clusterDatasetCorruptedException.isPresent()) {
                throw t;
            }

            // Retry without cache if it is caused by corrupted cluster dataset.
            invalidateCacheTransformations(originalTransformations);
            streamGraph = getStreamGraph(originalTransformations);
            return execute(streamGraph);
        }
    }

这段代码主要调用getStreamGraph生成StreamGraph。

//org/apache/flink/streaming/api/environment/StreamExecutionEnvironment.java:2237
    private StreamGraph getStreamGraph(List> transformations) {
        synchronizeClusterDatasetStatus();
        return getStreamGraphGenerator(transformations).generate();
    }
这里可以看到先生成了一个StreamGraphGenerator,再调用它的generate方法生成StreamGraph。主要是把transformations、执行配置、检查点配置和一些缓存信息作为成员变量封装了进去。具体的生成StreamGraph逻辑是下面这段代码:
//org/apache/flink/streaming/api/graph/StreamGraphGenerator.java:308
    public StreamGraph generate() {
        streamGraph = new StreamGraph(executionConfig, checkpointConfig, savepointRestoreSettings);
        streamGraph.setEnableCheckpointsAfterTasksFinish(
                configuration.get(
                        ExecutionCheckpointingOptions.ENABLE_CHECKPOINTS_AFTER_TASKS_FINISH));
        shouldExecuteInBatchMode = shouldExecuteInBatchMode();
        configureStreamGraph(streamGraph);

        alreadyTransformed = new IdentityHashMap<>();

        for (Transformation transformation : transformations) {
            transform(transformation);
        }

        streamGraph.setSlotSharingGroupResource(slotSharingGroupResources);

        setFineGrainedGlobalStreamExchangeMode(streamGraph);

        for (StreamNode node : streamGraph.getStreamNodes()) {
            if (node.getInEdges().stream().anyMatch(this::shouldDisableUnalignedCheckpointing)) {
                for (StreamEdge edge : node.getInEdges()) {
                    edge.setSupportsUnalignedCheckpoints(false);
                }
            }
        }

        final StreamGraph builtStreamGraph = streamGraph;

        alreadyTransformed.clear();
        alreadyTransformed = null;
        streamGraph = null;

        return builtStreamGraph;
    }
总结上述代码逻辑:
  • 构建一个StreamGraph对象并进行设置,主要是一些配置的设置和判断是流任务还是批任务,流批任务的生成逻辑不一样。
  • 在        for (Transformation transformation : transformations) {
                transform(transformation);
            }
    这段代码中对StreamExecutionEnvironment中管理的transformation转换成运行时的TransformationTranslator,然后根据这些转换信息生成StreamGraph的节点StreamNode,并创建节点连接。
    //org/apache/flink/streaming/api/graph/StreamGraphGenerator.java:187
        static {
            @SuppressWarnings("rawtypes")
            Map, TransformationTranslator>
                    tmp = new HashMap<>();
            tmp.put(OneInputTransformation.class, new OneInputTransformationTranslator<>());
            tmp.put(TwoInputTransformation.class, new TwoInputTransformationTranslator<>());
            tmp.put(MultipleInputTransformation.class, new MultiInputTransformationTranslator<>());
            tmp.put(KeyedMultipleInputTransformation.class, new MultiInputTransformationTranslator<>());
            tmp.put(SourceTransformation.class, new SourceTransformationTranslator<>());
            tmp.put(SinkTransformation.class, new SinkTransformationTranslator<>());
            tmp.put(LegacySinkTransformation.class, new LegacySinkTransformationTranslator<>());
            tmp.put(LegacySourceTransformation.class, new LegacySourceTransformationTranslator<>());
            tmp.put(UnionTransformation.class, new UnionTransformationTranslator<>());
            tmp.put(PartitionTransformation.class, new PartitionTransformationTranslator<>());
            tmp.put(SideOutputTransformation.class, new SideOutputTransformationTranslator<>());
            tmp.put(ReduceTransformation.class, new ReduceTransformationTranslator<>());
            tmp.put(
                    TimestampsAndWatermarksTransformation.class,
                    new TimestampsAndWatermarksTransformationTranslator<>());
            tmp.put(BroadcastStateTransformation.class, new BroadcastStateTransformationTranslator<>());
            tmp.put(
                    KeyedBroadcastStateTransformation.class,
                    new KeyedBroadcastStateTransformationTranslator<>());
            tmp.put(CacheTransformation.class, new CacheTransformationTranslator<>());
            translatorMap = Collections.unmodifiableMap(tmp);
        }
    • Transformation转换成TransformationTranslator,是一一对应的关系,所有的对应关系如上。
    • 流任务具体的StreamNode是调用TransformationTranslator的translateForStreaming方法来生成,并添加到StreamGraph中的。这里以一次OneInputTransformation转换为例,它首先会转换成OneInputTransformationTranslator,继承关系如下。Flink源码学习二 用户代码逻辑计划生成 1.17分支_第4张图片
    • 这里再调用抽象父类的translateInternal方法进行实际的添加StramNode操作。
      //org/apache/flink/streaming/runtime/translators/OneInputTransformationTranslator.java:63
          @Override
          public Collection translateForStreamingInternal(
                  final OneInputTransformation transformation, final Context context) {
              return translateInternal(
                      transformation,
                      transformation.getOperatorFactory(),
                      transformation.getInputType(),
                      transformation.getStateKeySelector(),
                      transformation.getStateKeyType(),
                      context);
          }
    • 最后会调用StreamGraph的addNode方法,这里StreamNode会保存算子的信息 
      //org/apache/flink/streaming/api/graph/StreamGraph.java:511
          protected StreamNode addNode(
                  Integer vertexID,
                  @Nullable String slotSharingGroup,
                  @Nullable String coLocationGroup,
                  Class vertexClass,
                  StreamOperatorFactory operatorFactory,
                  String operatorName) {
      
              if (streamNodes.containsKey(vertexID)) {
                  throw new RuntimeException("Duplicate vertexID " + vertexID);
              }
      
              StreamNode vertex =
                      new StreamNode(
                              vertexID,
                              slotSharingGroup,
                              coLocationGroup,
                              operatorFactory,
                              operatorName,
                              vertexClass);
      
              streamNodes.put(vertexID, vertex);
      
              return vertex;
          }
    • 经过遍历操作处理后,由StreamNode构建的DAG图StreamGraph就生成了。
  • 最后返回构建好的逻辑计划图StreamGraph。

4、优化的逻辑计划JobGraph的生成

生成好的StreamGraph会再次根据算子链做优化

//org/apache/flink/streaming/api/environment/StreamExecutionEnvironment.java:2183
    public JobClient executeAsync(StreamGraph streamGraph) throws Exception {
        checkNotNull(streamGraph, "StreamGraph cannot be null.");
        final PipelineExecutor executor = getPipelineExecutor();

        CompletableFuture jobClientFuture =
                executor.execute(streamGraph, configuration, userClassloader);

        try {
            JobClient jobClient = jobClientFuture.get();
            jobListeners.forEach(jobListener -> jobListener.onJobSubmitted(jobClient, null));
            collectIterators.forEach(iterator -> iterator.setJobClient(jobClient));
            collectIterators.clear();
            return jobClient;
        } catch (ExecutionException executionException) {
            final Throwable strippedException =
                    ExceptionUtils.stripExecutionException(executionException);
            jobListeners.forEach(
                    jobListener -> jobListener.onJobSubmitted(null, strippedException));

            throw new FlinkException(
                    String.format("Failed to execute job '%s'.", streamGraph.getJobName()),
                    strippedException);
        }
    }

yarn job调用的是下面这个方法

//org/apache/flink/client/deployment/executors/AbstractJobClusterExecutor.java:66
    @Override
    public CompletableFuture execute(
            @Nonnull final Pipeline pipeline,
            @Nonnull final Configuration configuration,
            @Nonnull final ClassLoader userCodeClassloader)
            throws Exception {
        final JobGraph jobGraph = PipelineExecutorUtils.getJobGraph(pipeline, configuration);

        try (final ClusterDescriptor clusterDescriptor =
                clusterClientFactory.createClusterDescriptor(configuration)) {
            final ExecutionConfigAccessor configAccessor =
                    ExecutionConfigAccessor.fromConfiguration(configuration);

            final ClusterSpecification clusterSpecification =
                    clusterClientFactory.getClusterSpecification(configuration);

            final ClusterClientProvider clusterClientProvider =
                    clusterDescriptor.deployJobCluster(
                            clusterSpecification, jobGraph, configAccessor.getDetachedMode());
            LOG.info("Job has been submitted with JobID " + jobGraph.getJobID());

            return CompletableFuture.completedFuture(
                    new ClusterClientJobClientAdapter<>(
                            clusterClientProvider, jobGraph.getJobID(), userCodeClassloader));
        }
    }

StreamGraph优化生成JobGraph

//org/apache/flink/streaming/api/graph/StreamingJobGraphGenerator.java:204
     private JobGraph createJobGraph() {
        preValidate();
        jobGraph.setJobType(streamGraph.getJobType());

        jobGraph.enableApproximateLocalRecovery(
                streamGraph.getCheckpointConfig().isApproximateLocalRecoveryEnabled());

        // Generate deterministic hashes for the nodes in order to identify them across
        // submission iff they didn't change.
        Map hashes =
                defaultStreamGraphHasher.traverseStreamGraphAndGenerateHashes(streamGraph);

        // Generate legacy version hashes for backwards compatibility
        List> legacyHashes = new ArrayList<>(legacyStreamGraphHashers.size());
        for (StreamGraphHasher hasher : legacyStreamGraphHashers) {
            legacyHashes.add(hasher.traverseStreamGraphAndGenerateHashes(streamGraph));
        }

        setChaining(hashes, legacyHashes);

        setPhysicalEdges();

        markContainsSourcesOrSinks();

        setSlotSharingAndCoLocation();

        setManagedMemoryFraction(
                Collections.unmodifiableMap(jobVertices),
                Collections.unmodifiableMap(vertexConfigs),
                Collections.unmodifiableMap(chainedConfigs),
                id -> streamGraph.getStreamNode(id).getManagedMemoryOperatorScopeUseCaseWeights(),
                id -> streamGraph.getStreamNode(id).getManagedMemorySlotScopeUseCases());

        configureCheckpointing();

        jobGraph.setSavepointRestoreSettings(streamGraph.getSavepointRestoreSettings());

        final Map distributedCacheEntries =
                JobGraphUtils.prepareUserArtifactEntries(
                        streamGraph.getUserArtifacts().stream()
                                .collect(Collectors.toMap(e -> e.f0, e -> e.f1)),
                        jobGraph.getJobID());

        for (Map.Entry entry :
                distributedCacheEntries.entrySet()) {
            jobGraph.addUserArtifact(entry.getKey(), entry.getValue());
        }

        // set the ExecutionConfig last when it has been finalized
        try {
            jobGraph.setExecutionConfig(streamGraph.getExecutionConfig());
        } catch (IOException e) {
            throw new IllegalConfigurationException(
                    "Could not serialize the ExecutionConfig."
                            + "This indicates that non-serializable types (like custom serializers) were registered");
        }

        jobGraph.setChangelogStateBackendEnabled(streamGraph.isChangelogStateBackendEnabled());

        addVertexIndexPrefixInVertexName();

        setVertexDescription();

        // Wait for the serialization of operator coordinators and stream config.
        try {
            FutureUtils.combineAll(
                            vertexConfigs.values().stream()
                                    .map(
                                            config ->
                                                    config.triggerSerializationAndReturnFuture(
                                                            serializationExecutor))
                                    .collect(Collectors.toList()))
                    .get();
            FutureUtils.combineAll(coordinatorSerializationFutures).get();
        } catch (Exception e) {
            throw new FlinkRuntimeException("Error in serialization.", e);
        }

        if (!streamGraph.getJobStatusHooks().isEmpty()) {
            jobGraph.setJobStatusHooks(streamGraph.getJobStatusHooks());
        }

        return jobGraph;
    }

核心生成逻辑是line222 setChaining中调用createChain,具体核心逻辑如下:

//org/apache/flink/streaming/api/graph/StreamingJobGraphGenerator.java:596
    private List createChain(
            final Integer currentNodeId,
            final int chainIndex,
            final OperatorChainInfo chainInfo,
            final Map chainEntryPoints) {

        Integer startNodeId = chainInfo.getStartNodeId();
        if (!builtVertices.contains(startNodeId)) {

            List transitiveOutEdges = new ArrayList();

            List chainableOutputs = new ArrayList();
            List nonChainableOutputs = new ArrayList();

            StreamNode currentNode = streamGraph.getStreamNode(currentNodeId);

            for (StreamEdge outEdge : currentNode.getOutEdges()) {
                if (isChainable(outEdge, streamGraph)) {
                    chainableOutputs.add(outEdge);
                } else {
                    nonChainableOutputs.add(outEdge);
                }
            }

            for (StreamEdge chainable : chainableOutputs) {
                transitiveOutEdges.addAll(
                        createChain(
                                chainable.getTargetId(),
                                chainIndex + 1,
                                chainInfo,
                                chainEntryPoints));
            }

            for (StreamEdge nonChainable : nonChainableOutputs) {
                transitiveOutEdges.add(nonChainable);
                createChain(
                        nonChainable.getTargetId(),
                        1, // operators start at position 1 because 0 is for chained source inputs
                        chainEntryPoints.computeIfAbsent(
                                nonChainable.getTargetId(),
                                (k) -> chainInfo.newChain(nonChainable.getTargetId())),
                        chainEntryPoints);
            }

            chainedNames.put(
                    currentNodeId,
                    createChainedName(
                            currentNodeId,
                            chainableOutputs,
                            Optional.ofNullable(chainEntryPoints.get(currentNodeId))));
            chainedMinResources.put(
                    currentNodeId, createChainedMinResources(currentNodeId, chainableOutputs));
            chainedPreferredResources.put(
                    currentNodeId,
                    createChainedPreferredResources(currentNodeId, chainableOutputs));

            OperatorID currentOperatorId =
                    chainInfo.addNodeToChain(
                            currentNodeId,
                            streamGraph.getStreamNode(currentNodeId).getOperatorName());

            if (currentNode.getInputFormat() != null) {
                getOrCreateFormatContainer(startNodeId)
                        .addInputFormat(currentOperatorId, currentNode.getInputFormat());
            }

            if (currentNode.getOutputFormat() != null) {
                getOrCreateFormatContainer(startNodeId)
                        .addOutputFormat(currentOperatorId, currentNode.getOutputFormat());
            }

            StreamConfig config =
                    currentNodeId.equals(startNodeId)
                            ? createJobVertex(startNodeId, chainInfo)
                            : new StreamConfig(new Configuration());

            setVertexConfig(
                    currentNodeId,
                    config,
                    chainableOutputs,
                    nonChainableOutputs,
                    chainInfo.getChainedSources());

            if (currentNodeId.equals(startNodeId)) {

                config.setChainStart();
                config.setChainIndex(chainIndex);
                config.setOperatorName(streamGraph.getStreamNode(currentNodeId).getOperatorName());

                LinkedHashSet transitiveOutputs = new LinkedHashSet<>();
                for (StreamEdge edge : transitiveOutEdges) {
                    NonChainedOutput output =
                            opIntermediateOutputs.get(edge.getSourceId()).get(edge);
                    transitiveOutputs.add(output);
                    connect(startNodeId, edge, output);
                }

                config.setVertexNonChainedOutputs(new ArrayList<>(transitiveOutputs));
                config.setTransitiveChainedTaskConfigs(chainedConfigs.get(startNodeId));

            } else {
                chainedConfigs.computeIfAbsent(
                        startNodeId, k -> new HashMap());

                config.setChainIndex(chainIndex);
                StreamNode node = streamGraph.getStreamNode(currentNodeId);
                config.setOperatorName(node.getOperatorName());
                chainedConfigs.get(startNodeId).put(currentNodeId, config);
            }

            config.setOperatorID(currentOperatorId);

            if (chainableOutputs.isEmpty()) {
                config.setChainEnd();
            }
            return transitiveOutEdges;

        } else {
            return new ArrayList<>();
        }
    }

总结上述算子链接优化逻辑:

  • 如果从当前算子链的startNode开始没有生成过 JobVertex,则执行 chain逻辑,line622会进行深度遍历,将从源节点开始到第一个不可 chain 的 StreamNode 之间的算子做 chain 操作【先算叶子节点的 chain,依次往根节点计算】
  • line 629 遇到不可 chain 的边,开始深度遍历生成 JobVertex
  • line 672 会将 StreamNode 的输入输出配置,包括序列化配置等设置到上面的 StreamingConfig 中,并在 vertexConfigs 中保存起来,如果是新生成的 JobVertex,对应的 StreamingConfig 会以startNodeId做为 key 进行保存
  • transitiveOutEdges会保存的该节点下游所有的nonChainableOutputs的边,最终的方法会返回这个nonChainableOutputs的数据结构
  • 连接startNode和所有的transitiveOutEdges【在输入 JobVertex 创建 IntermediateDataSet,partition类型为 pipeline,生成 JobEdge】
  • 如果是新生成JobVertex,继续设置config,包括setChainStart,所有物理输出,及直接逻辑输出、chainedConfigs等
  • 如果不是新生成 JobVertex,直接chainedConfigs

简述JobGraph生成的流程

  • 从DataStream上操作生成的transformations List
  • 根据transformations生成运行时的TransformationTranslator并生成StreamNode和StreamEdge
  • 做算子的chain操作合并生成JobVertex然后生成新的StramEdge

一个JobVertex代表一个逻辑计划的节点,也就是DAG图上的顶点。注意在代码里面,JobVertex其实被作为配置封装到了StreamConfig

那具体这个StreamConfig(JobVertex)怎么生成的:

//org/apache/flink/streaming/api/graph/StreamingJobGraphGenerator.java:770
    private StreamConfig createJobVertex(Integer streamNodeId, OperatorChainInfo chainInfo) {

        JobVertex jobVertex;
        StreamNode streamNode = streamGraph.getStreamNode(streamNodeId);

        byte[] hash = chainInfo.getHash(streamNodeId);

        if (hash == null) {
            throw new IllegalStateException(
                    "Cannot find node hash. "
                            + "Did you generate them before calling this method?");
        }

        JobVertexID jobVertexId = new JobVertexID(hash);

        List> chainedOperators =
                chainInfo.getChainedOperatorHashes(streamNodeId);
        List operatorIDPairs = new ArrayList<>();
        if (chainedOperators != null) {
            for (Tuple2 chainedOperator : chainedOperators) {
                OperatorID userDefinedOperatorID =
                        chainedOperator.f1 == null ? null : new OperatorID(chainedOperator.f1);
                operatorIDPairs.add(
                        OperatorIDPair.of(
                                new OperatorID(chainedOperator.f0), userDefinedOperatorID));
            }
        }

        if (chainedInputOutputFormats.containsKey(streamNodeId)) {
            jobVertex =
                    new InputOutputFormatVertex(
                            chainedNames.get(streamNodeId), jobVertexId, operatorIDPairs);

            chainedInputOutputFormats
                    .get(streamNodeId)
                    .write(new TaskConfig(jobVertex.getConfiguration()));
        } else {
            jobVertex = new JobVertex(chainedNames.get(streamNodeId), jobVertexId, operatorIDPairs);
        }

        if (streamNode.getConsumeClusterDatasetId() != null) {
            jobVertex.addIntermediateDataSetIdToConsume(streamNode.getConsumeClusterDatasetId());
        }

        for (OperatorCoordinator.Provider coordinatorProvider :
                chainInfo.getCoordinatorProviders()) {
            coordinatorSerializationFutures.add(
                    CompletableFuture.runAsync(
                            () -> {
                                try {
                                    jobVertex.addOperatorCoordinator(
                                            new SerializedValue<>(coordinatorProvider));
                                } catch (IOException e) {
                                    throw new FlinkRuntimeException(
                                            String.format(
                                                    "Coordinator Provider for node %s is not serializable.",
                                                    chainedNames.get(streamNodeId)),
                                            e);
                                }
                            },
                            serializationExecutor));
        }

        jobVertex.setResources(
                chainedMinResources.get(streamNodeId), chainedPreferredResources.get(streamNodeId));

        jobVertex.setInvokableClass(streamNode.getJobVertexClass());

        int parallelism = streamNode.getParallelism();

        if (parallelism > 0) {
            jobVertex.setParallelism(parallelism);
        } else {
            parallelism = jobVertex.getParallelism();
        }

        jobVertex.setMaxParallelism(streamNode.getMaxParallelism());

        if (LOG.isDebugEnabled()) {
            LOG.debug("Parallelism set: {} for {}", parallelism, streamNodeId);
        }

        jobVertices.put(streamNodeId, jobVertex);
        builtVertices.add(streamNodeId);
        jobGraph.addVertex(jobVertex);

        return new StreamConfig(jobVertex.getConfiguration());
    }

这里重点注意

  • line798 chainedInputOutputFormats.containsKey(streamNodeId) ,判断当前节点是不是数据源节点,如果是会将用户代码设置到中jobVertex的配置中,方便在jobmanager提交作业的时候做初始化。
  • line836 jobVertex.setInvokableClass(streamNode.getJobVertexClass()); 这是设置任务实际运行时的执行类,通过这个类调用用户自定义的操作算子函数,是flink任务中真正被执行的类。

最终JobGraoh生成完成,由客户端提交给yarn创建的集群,在jobmanager中再生成物理计划。下一节介绍flink如何向yarn申请资源,并启动jobmanager和taskmanager,部署整个任务。

你可能感兴趣的:(大数据flink学习及问题解决)