- 两个单链表元素交叉合并
TXHNY
数据结构链表数据结构
设带头结点的线性单链表A={a1,a2,…,am},B={b1,b2,…,bn}。试编写算法按下列规则合并A、B为线性单链表C,使得C={a1,b1,a2,b2,...am,bm,...,bn},mn函数接口定义:LinkListCombineList(LinkListLa,LinkListLb);其中La和Lb都是用户传入的参数,分别为待合并单链表的头指针。函数须返回合并后的单链表的头指针。裁判
- 解析:浏览器事件冒泡及事件捕获
C860
浏览器浏览器
今天的效率有点奇葩,说高吧,一个上午做了不少事。说低吧,因为一个分布式的算法花了我不少时间,终于有点头绪。估计明天会写一篇文章来讲述一下自己的看法。而今天,还是回到前端。今天来说说事件冒泡和事件捕获。首先肯定是概念:什么是事件冒泡?什么是事件捕获?简单地说,事件冒泡和事件捕获都是一种事件传递的机制。这种机制可以使事件在不同级的元素间传递。事件冒泡是从事件触发的源节点,向父节点传递,直到到达最顶节点
- Ai时代初期,人类文明的多纬度演进方向分析
Ai度
人工智能
在AI时代初期,文明的演进呈现出多维度、跨领域的突破性特征,结合最新研究进展与实践案例,其深层变革可进一步细化为以下六大维度:一、技术平权与生产要素重构AI技术通过算力跃迁与认知革命重构生产要素。例如,华为昇腾芯片使县域政务系统获得省级决策能力,特斯拉工厂的机械臂实现0.8秒完成车身焊接,而量子-经典混合算法将药物分子模拟效率提升1200倍。这种技术平权运动正推动全球劳动生产率提升30%,同时催生
- 【数组模拟邻接表】
奋斗的阿庆
c++算法图论深度优先
前言在做图论算法题的过程中,总会遇到用数组来模拟邻接表进而表示图。之前一直没弄明白在用数组模拟邻接表相关的细节。如今明白了,记录一下。帮助不理解的小伙伴。一、所用变量constintN=1010;//表示点的个数constintM=10100;//表示边的条数inth[N];//h[i]表示以当前点i为起点所相连的第一条边的序号inte[2*M];//e[i]表示第i条边所对应的终点intne[2
- 基于Python的智能决策支持系统:实现智能化决策的关键要素
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型自然语言处理人工智能语言模型编程实践开发语言架构设计
文章目录基于Python的智能决策支持系统:实现智能化决策的关键要素11.背景介绍2.核心概念与联系数据收集与预处理模型构建与训练决策规则生成与优化决策结果评估与反馈3.核心算法原理具体操作步骤数据挖掘算法机器学习算法优化算法4.数学模型和公式详细讲解举例说明线性回归模型最小二乘法5.项目实践:代码实例和详细解释说明6.实际应用场景金融领域医疗领域供应链管理智能制造7.工具和资源推荐编程语言和开发
- 补偿算法之相位补偿算法
傻童:CPU
Qt自动控制理论算法android
补偿算法之相位补偿算法相位补偿算法:在一些控制系统中,系统的相位裕度可能不足,导致系统稳定性变差。相位补偿算法通过增加或减少特定频率下的相角来调整系统的相位特性。例如,在电机调速系统中,为了提高系统在高速运行时的稳定性,可能会采用相位超前补偿算法,通过在控制回路中添加适当的滤波器或控制器结构,使系统在高频段的相位提前,从而增加相位裕度,防止系统出现振荡或失稳现象。相位补偿算法的核心目标是对信号或系
- 代码随想录算法训练营第三十五天(20250303) |01背包问题 二维,01背包问题 一维,416. 分割等和子集 -[补卡20250316]
ZXZ_13
算法
01背包问题二维链接遍历物品没有大小顺序要求重点是模拟,推导出递推公式#include#includeintmain(){intm,n;std::cin>>m>>n;std::vectorweight(m,0),value(m,0);for(inti{0};i>weight[i];}for(inti{0};i>value[i];}std::vector>dp(m,std::vector(n+1,0
- 32.代码随想录算法训练营第三十二天|509. 斐波那契数,70. 爬楼梯,746. 使用最小花费爬楼梯
白鹭鸣鸣!
算法javadp
32.代码随想录算法训练营第三十二天|509.斐波那契数,70.爬楼梯,746.使用最小花费爬楼梯DP数组的定义以及下标的含义递推公式动态规划的初始化是很重要的遍历顺序打印数组509.斐波那契数-力扣(LeetCode)斐波那契数(通常用F(n)表示)形成的序列称为斐波那契数列。该数列由0和1开始,后面的每一项数字都是前面两项数字的和。也就是:F(0)=0,F(1)=1F(n)=F(n-1)+F(
- AI 大模型应用数据中心的数据清洗工具
SuperAGI2025
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
1.背景介绍在人工智能大模型应用的浪潮中,数据清洗作为数据预处理的重要环节,对于提升模型性能和可靠性具有至关重要的作用。数据中心作为人工智能模型的运行环境,面临着海量数据流和多样化的数据类型,如何高效、准确地进行数据清洗,成为应用大模型的关键问题之一。本文将详细介绍AI大模型应用数据中心的数据清洗工具,包括核心概念、算法原理、具体操作步骤、应用场景等,旨在为AI大模型的实际应用提供参考。2.核心概
- gralloc usage flags
Damon_X
gralloc
下面这些示例主要说明了grallocusageflags在图像处理和多媒体应用中如何影响性能和正确性。让我们逐个详细分析每个问题的根因和修复方案,并深入解析gralloc标志对缓存管理和数据流的影响。✅Example1:长曝光快照耗时异常问题描述症状:长曝光快照(longexposuresnapshot)在某些内存优化后,拍摄时间异常变长。根因:第三方算法在多个快照帧上执行,耗时约1.2秒。Buf
- 基于知识图谱的个性化智能教学推荐系统(文档+源码)
「已注销」
python知识图谱人工智能pythonpygamepyqtdash
目录摘要Abstract目录第1章绪论1.1研究背景及意义1.2国内外研究现状1.2.1知识图谱1.2.2个性化推荐系统1.3本文研究内容及创新点1.4全文组织结构第2章相关理论与技术概述2.1知识图谱2.1.1知识图谱的介绍与发展2.1.2知识图谱的构建2.3协同过滤推荐算法2.2.1推荐算法概述2.2.2Pearson相关系数2.2.3Spearman相关系数2.4Bert模型和Albert模
- 暗光增强技术研究进展与产品落地综合分析(2023-2025)
AndrewHZ
深度学习新浪潮图像处理算法动态范围计算机视觉深度学习transformer暗光增强
一、引言暗光增强技术作为计算机视觉与移动影像领域的核心研究方向之一,近年来在算法创新、硬件适配及产品落地方面取得了显著进展。本文从技术研究与产业应用两个维度,系统梳理近三年(2023-2025)该领域的关键突破,并对比分析主流手机厂商的影像技术优劣势。二、暗光增强技术研究进展1.算法创新:从传统模型到深度学习(1)Retinex理论的深度结合清华与ETH联合提出的Retinexformer(202
- JVM垃圾回收器详解
高锰酸钾_
jvm测试工具java
JVM垃圾回收器详解年轻代与老年代我们知道在分代GC算法中,将我们的堆内存分为了年轻代与老年代,那为什么要将内存分为年轻代和老年代呢?可以通过调整年轻代和老年代的比例来适应不同类型的应用程序,提高内存的利用率和性能.新生代和老年代使用不同的垃圾回收算法,新生代一般选择复制算法,老年代可以选择标记-清除和标记-整理算法,由程序员来选择灵活度较高。分代的设计中允许只回收新生代(minorgc),如果能
- 自动驾驶AVM环视算法--鱼眼相机的畸变矫正原理和实测(图片和视频测试)
金书世界
手撸AVM全景代码数码相机
参考:金书世界测试工程和视频:链接:https://pan.baidu.com/s/11GNLuIxcONGCeobp0MbXFQ?pwd=0z6l提取码:0z6l1、平面相机的成像和坐标系如下所示说明1、f(ud,vd)就是以图像中心为原点坐标(和p(x,y)坐标相对,就是坐表原点不同)。2、p(x,y)就是在图像坐标系下的坐标点,坐标点的为图像的左上角点,这个和世界图像的保存数据的坐标一直。3
- 华为OD机试九日集训第2期 - 按算法分类,由易到难,循序渐进,提升编程能力和解题技巧,从而提高机试通过率
哪 吒
搬砖工逆袭Java架构师华为od算法九日集训Java
目录一、适合人群二、本期训练时间三、如何参加四、数据结构与算法大纲五、华为OD九日集训第1期第1天、逻辑分析第2天、队列第3天、双指针第4天栈第5天滑动窗口第6天、二叉树第7天、并查集第8天、矩阵第9天、贪心算法六、国内直接使用满血ChatGPT4o、o1、o3-mini-high、Claude3.7Sonnet、满血DeepSeekR11、纯原版ChatGPT、Claude2、技术支持3、支持所
- 芒格的“思维格栅“:构建全面的投资分析框架
AGI大模型与大数据研究院
DeepSeekai
芒格的"思维格栅":构建全面的投资分析框架关键词:芒格、思维格栅、投资分析框架、跨学科思维、投资决策摘要:本文深入探讨了芒格的“思维格栅”理论及其在构建全面投资分析框架中的应用。首先介绍了“思维格栅”理论的背景和重要性,接着阐述了其核心概念与联系,包括跨学科思维的原理和架构。通过详细讲解核心算法原理和具体操作步骤,结合数学模型和公式进行举例说明,帮助读者理解如何运用这一理论进行投资分析。随后通过项
- 算力技术演进与多场景融合路径
智能计算研究中心
其他
内容概要算力技术的演进正经历从异构计算到量子计算的范式跃迁。当前技术图谱中,芯片制程突破与架构创新持续推动算力密度提升,如5nm以下先进工艺与存算一体设计显著增强运算单元效率。与此同时,模型压缩、数据预处理等算法优化手段使单位算力产出提高30%以上。典型应用场景中,工业互联网通过自适应计算实现毫秒级实时控制,医疗影像领域借助分布式计算完成TB级数据处理,而智能安防系统依托边缘计算降低端到端时延至5
- 金融风控算法透明度与可解释性优化
智能计算研究中心
其他
内容概要金融风控算法的透明化研究面临模型复杂性提升与监管合规要求的双重挑战。随着深度学习框架在特征提取环节的广泛应用,算法可解释性与预测精度之间的平衡成为核心议题。本文从联邦学习架构下的数据协作机制出发,结合特征工程优化与超参数调整技术,系统性分析逻辑回归、随机森林等传统算法在召回率、F1值等关键指标上的表现差异。研究同时探讨数据预处理流程对风控决策鲁棒性的影响,并提出基于注意力机制的特征权重可视
- 联邦学习算法安全优化与可解释性研究
智能计算研究中心
其他
内容概要本研究围绕联邦学习算法的安全性优化与模型可解释性增强展开系统性探索。首先,针对联邦学习中数据隐私泄露与模型性能损耗的固有矛盾,提出一种融合差分隐私与动态权重聚合的协同优化框架,通过分层加密机制降低敏感信息暴露风险。其次,引入可解释性算法(如LIME与SHAP)构建透明化决策路径,结合注意力机制实现特征贡献度的可视化映射,有效提升模型在医疗影像异常检测与金融欺诈识别场景中的可信度。此外,研究
- 算力融合创新与多场景应用生态构建
智能计算研究中心
其他
内容概要算力作为数字经济的核心驱动力,正经历从单一计算范式向融合架构的跨越式演进。随着异构计算、光子计算等底层技术的突破,算力资源逐步形成跨架构协同、多模态联动的智能供给体系,支撑工业互联网、医疗影像、智能安防等场景实现效率跃升。与此同时,量子计算与神经形态计算的前沿探索,正在重塑科学计算与实时决策的技术边界。建议行业关注算力可扩展性与安全标准的协同设计,通过动态调度算法与分布式架构优化,构建弹性
- 详解如何通过Python的BeautifulSoup爬虫+NLP标签提取+Dijkstra规划路径和KMeans聚类分析帮助用户规划旅行路线
mosquito_lover1
pythonbeautifulsoup爬虫kmeans自然语言处理
系统模块:数据采集模块(爬虫):负责从目标网站抓取地点数据(如名称、经纬度、描述等)数据预处理模块(标签算法):对抓取到的地点数据进行清洗和分类。根据地点特征(如经纬度、描述文本)打上标签(如“适合家庭”、“适合冒险”)。地理数据处理模块(地图API):使用地图API获取地点的详细信息(如地址、距离、路径等)。计算地点之间的距离或路径。路径规划模块:根据用户输入的起点和终点,规划最优路径。支持多种
- C语言的回溯算法
苏墨瀚
包罗万象golang开发语言后端
C语言中的回溯算法引言回溯算法(Backtracking)是一种通过搜索所有可能的候选解,找到符合条件的解的算法。它常用于解决一些组合问题、约束满足问题和优化问题。回溯算法的核心思想是通过尝试并逐步构建解的过程,在发现某个解不能继续时,从当前解的最后一个决策点“回溯”到之前的状态,进行其他可能性的探索。在这篇文章中,我们将探讨回溯算法的基本思想、基本框架及其在C语言中的具体实现,应用实例等。回溯算
- DeepSeek混合专家架构赋能智能创作
智能计算研究中心
其他
内容概要在人工智能技术加速迭代的当下,DeepSeek混合专家架构(MixtureofExperts)通过670亿参数的动态路由机制,实现了多模态处理的范式突破。该架构将视觉语言理解、多语言语义解析与深度学习算法深度融合,构建出覆盖文本生成、代码编写、学术研究等场景的立体化能力矩阵。其核心优势体现在三个维度:精准化内容生产——通过智能选题、文献综述自动生成等功能,将学术论文写作效率提升40%以上;
- 区块链Blockchain
weixin_33827590
区块链密码学数据结构与算法
区块链Blockchain区块链是分布式数据存储、点对点传输、共识机制、加密算法等计算机技术的新型应用模式。所谓共识机制是区块链系统中实现不同节点之间建立信任、获取权益的数学算法。狭义来讲,区块链是一种按照时间顺序将数据区块以顺序相连的方式组合成的一种链式数据结构,并以密码学方式保证的不可篡改和不可伪造的分布式账本。广义来讲,区块链技术是利用块链式数据结构来验证与存储数据、利用分布式节点共识算法来
- 怎样用Java实现快速排序与找到数组中第k小的值?
上官美丽
java算法排序算法
大家好,今天我们来聊聊在Java中如何实现快速排序算法,以及如何利用这个排序算法来找到一个数组中的第k小的值。这两个主题在算法和数据结构的学习中都非常重要,理解这些内容对编写高效程序有很大的帮助!快速排序(QuickSort)是一种非常流行的排序算法,因为它在平均情况下表现得非常迅速。它的基本思路是通过一个“基准”值将数组分为两部分,然后递归对这两部分进行排序。听起来简单吧!接下来,我们深入了解一
- 一种基于swagger 2.0 yaml文件的接口异常用例生成算法,单因子变量法
xiyubaby.17
java测试用例
详细解决方案一、设计思路基于Swagger2.0的YAML定义,为每个参数生成两类测试用例:正常用例:所有参数均符合约束。异常用例:仅一个参数违反约束,其他参数正常,且每个参数需覆盖所有可能的异常场景。二、实现步骤解析Swagger文件使用SnakeYAML解析YAML,提取参数定义(类型、约束、是否必填等)。生成正常值根据参数类型和约束生成合法值。生成异常值针对每个参数的所有约束,生成违反每个约
- 【算法设计-链栈和链队列】链栈和链队列的实现
baimeng5720
算法设计
1.链队列。利用带有头结点的单链表来实现链队列,插入和删除的复杂度都为o(1)代码:#include#includetypedefstructQnode{intdata;Qnode*next;}Qnode;typedefstructLinkQueue{Qnode*front;Qnode*rear;}LinkQueue;voidinitialize(LinkQueue*LinkQueue){Link
- 分布式系统中的负载均衡
樽酒ﻬق
架构设计负载均衡网络运维
目录分布式系统中的负载均衡引言1.什么是负载均衡?1.1负载均衡的目标2.负载均衡的类型2.1网络负载均衡(NetworkLoadBalancing)2.2应用负载均衡(ApplicationLoadBalancing)2.3全局负载均衡(GlobalLoadBalancing)2.4计算负载均衡(ComputeLoadBalancing)3.负载均衡算法3.1轮询(RoundRobin)3.2加
- 数据结构与算法——栈和队列
深度学习&目标检测实战项目
算法数据结构java开发语言
目录第三章:栈和队列第一节:栈(Stack)1.1:栈的基本运算:1.2:栈的存储结构和基本运算第二节:队列2.1:定义及基本运算2.2:队列的存储结构和基本运算本章小结:第三章:栈和队列第一节:栈(Stack)是限制在表一端进行插入和删除操作的线性表。允许进行插入、删除操作的这一端称为栈顶(Top),另一个固定端称为栈底。例如栈中有三个元素,近栈的顺序是a1、a2、a3,当需要出栈时顺序为a3,
- 人工智能之数学基础:数学对人工智能技术发展的作用
每天五分钟玩转人工智能
机器学习深度学习之数学基础人工智能深度学习机器学习神经网络自然语言处理数学
本文重点数学是人工智能技术发展的基础,它提供了人工智能技术所需的数学理论和算法,包括概率论、统计学、线性代数、微积分、图论等等。本文将从以下几个方面探讨数学对人工智能技术发展的作用。概率论和统计学概率论和统计学是人工智能技术中最为重要的数学分支之一。概率论和统计学的应用范围非常广泛,包括机器学习、数据挖掘、自然语言处理、计算机视觉等领域。在人工智能技术中,概率论和统计学主要用于处理不确定性的问题,
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理